電子顕微鏡用電子銃の電位分布及び

電子軌道の算出

竹 松 英 夫

The Calculation of the Field Distribution and Electron Trajectory in Electron Microscope Gun.

Hideo TAKEMATSU

The characteristics of the electron microscope gun with a hair pin filament is studied by using a digital computer.

The field intensity is calculated by a relaxation method.

It is seen that the low beam current gun and high field intensity in the vicinity of the cathode tip are obtained when the tip of the cathode is placed near the Wehnelt surface as closely as possible and the Wehnelt is at high bias.

The mechanism of the hollow beam is explained by calculating the electron density at the plane, far away from the cathode, vertical to the optical axis.

I緒 論

電子顕微鏡用電子銃内の電位分布及び電子軌道の算出 を,従前より本学の電子計算機を利用する事に依り,継 続して来たので,その概略を,極めて簡単に記載して見 たい.本稿に於ては,主に Hair Pin 型の陰極につい て考えてみる.現在広く用いられている普通の電子顕微 鏡用電子銃(以下単に電子銃と呼ぶ)は第1図に示す様 に、タングステン Hair Pin 型陰極と,Wehnelt Cylinder 及び陽極とから成り立っている.電子銃の電子 光学的諸性質を論ずる時は,各電極の構造や静電界は軸

(光軸)に対して廻転対称と考え,主に近軸光線を問題 にする.故に斯る近軸光線を形成する電子軌道を論ずる 際には先づ光軸上及びその附近の電位分布を知る事が必 要となる.

I 電位分布の算出

1. 近似值計算法

上述の構造を有つ銃内の電位分布を詳細に正確に解析 的手段で求むる事は、出来ない事であり、実験的には抵 抗回路網や電解槽を用いても求められる筈ではあるが、 未だ斯る型の銃に対しては、詳細なる測定は行われてい ない.

近似値計算(数値計算)は緩和法に依るのが適当と考 えるが、此を詳細に逐行するには、電子計算機を使用せ ずしては到底不可能である. 筆者は専ら NEAC 2203 を使 用したのであるが,それとても記憶容量の不足その他 で,目的とする広範囲の値を短時間に得る事は出来ずに 後述の様に何回もの細分化を行い,同じ形の計算を繰り 返えす事に依り漸く所期の結果に到り得た.

扨近似値計算法を極く簡単に説明すると,前述の様に 軸に対し廻転対称の静電場に対しては Laplace の方程 式は r, z を夫々軸に垂直又は軸方向の円柱座標とする と,周知の如くに, φ を potential とする事に依り

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \varphi}{\partial r} \right) + \frac{\partial^2 \varphi}{\partial z^2} = 0 \tag{1}$$

と書ける.此処で銃内に或る領域を設定する,此の与え られた領域の境界上では φ は既知とする.此の領域を網 目に区切りその格子点(i, j)について(1)式を差分方程 式に書き直すと,(此処でi,jは夫々r方向及びz方向 の格子点のナンバーである.)

$$(1 + \frac{1}{2i})\varphi_{i+1,j} + (1 - \frac{1}{2i})\varphi_{i-1,j} + \varphi_{i,j+1} + \varphi_{i,j-1} - 4\varphi_{i,j} = 0 \qquad (i \neq 0) \qquad \dots \dots \dots \dots (2)$$

 $4\varphi_{1,j}+\varphi_{0,j+1}+\varphi_{0,j-1}-6\varphi_{0,j}=0$ (*i*=0)……(3) 此処で $\varphi_{i,j}$ は(*i*, *j*) なる格子点の potential, 従って (3) 式の $\varphi_{0,j+1}$, $\varphi_{0,j-1}$, $\varphi_{0,j}$ 等は r=0 乃ち軸上の potential を示す事は言うまでもない.

緩和法で,k回目の計算迄に得られた最も新しい ϕ の 近似値を用いて次の新しい近似値を格子点(i,j)に於 て求むるには,その値を $\phi_{i,j}$ (k+1)とすると次の如くし て求められる.

$$R^{(k)}{}_{i,j} = \frac{1}{4} \left\{ \left(1 + \frac{1}{2i} \right) \varphi^{(k+1)}_{i+1,j} + \left(1 - \frac{1}{2i} \right) \varphi^{(k)}_{i-1,j} + \left(\frac{1}{2i} \right) \varphi^{(k)}_{i,j} + \left$$

此処で α は加速係数と呼び

$$1 \le \alpha \le 2$$

とする. (以上の式の Reduction は本稿では 省略する ことにする.)

計算の収歛速度は α の値に 非常に 敏感であり, 此の 値の撰択に際しては充分考慮すべき点があるが, その最 適値を求める事は, 夫れ自体大分労力を要する題目と考 えられる. 筆者は緩和法を行っている途上に於て α の値 を数回増加する事に依り収歛を早める方法を行った. 此 の時の α の値の増加の仕方は, 数回の計算例で知り得 た. $R_{i'j}^{(k)}$ の値(此を剩余と呼ぶ)が計算値の精度を決 める訳であるが, 筆者は銃内の電極に与える最高電位(陽極電位)を50×10^a(V)としたので, 各回の格子点の 計算で剰余の絶対値の最高値を $\left| R_{i'j}^{(k)} \right|$ とすると

$$\left| \left. R_{i'j}^{(k)} \right| \max < 0.1(V)$$

となると、計算を停止させる様にした.

与えられた領域に対する合計の計算時間は,格子点数に 依っても大きく左右される訳であるが,上述の $\alpha, R_{i,j}^{(k)}$ を決める方法に於ては大低の計算例は100回前後の緩和 法を行って収歛している.

2. 計算結果(数種の計算例)

第1図に描かれる構造を有つ実際の銃の,電位分布を 求めるに当っては,最初の近似としては,第2図の様に

陰極は太さのない(直径 0mm)半直線とし, 此を光軸 に一致させ, Whhnelt も厚さを有たぬ円板と仮定し,

陽極は Wehnelt や陰極先端からは遙か遠方に在ると考 えられるが故に孔を有たぬ円板と仮定して,光軸に垂直 に在ってその中心を光軸に一致させた.此の場合,実際

の銃から考えて Wehnelt の孔径を 2(mm), その面か ら陽極は 20(mm) 離れたものとした.前述の緩和法を 行い各格子点の電位分布を求めるに当っては,実際には 多くの場合, 陰極, Wehnelt, 陽極の電位を夫々 (0, 0, 1) (V) の場合と (0, 1, 0) (V) の場合とに於て行い, 最後に例えば陰極 (0(V)), Wehnelt [-1000(V)], 陽 極 [$50 \times 10^{s}(V)$] の場合の電位は,前者の結果を $50 \times$ 10^{s} 倍し,此れに後者の結果を-1000倍したものを 重畳 させて求めた.勿論,此の (0, 0, 1) (V) (0, 1, 0) (V) の計算に於ては,前述の $\left| R^{(k)}_{i,j} \right|_{max}$ $d10^{-s}(V)$ 程度に 押えてある. 斯く計算を行うと,任意の陽極電位,We-

hnelt 電位の組合せを求めるのに時間を節約出来る. 第 2図は計算を行わんとした領域に,三電極を配したもの であるが,網目の数は350~700程度であるから,第一回 の近似は大略の電位分布を知るに留まるが,筆者の狙い は先づ陰極附近の電位分布を詳細に求める事に在るので 次には,第2図の点線の範囲を縦横2倍ずつ拡大する.

第 13 図

その時の領域の境界値は上の結果を使う.斯る操作を数 回繰り返えす事に依り,微少区域を拡大し得て詳細なる 電位分布を得る.第3図〜第11図は第3回目の拡大の結 果である.実験上(実際に電子銃を使用している状態)

に於ては、その性質は、Wehnelt の孔径、その孔の厚 さ、孔の端の形状、Wehnelt の陽極側に近い面よりの

陰極先端の引き込みの大きさと、陽極の電位を一定に保 っとき、Wehnelt の電位等で決まる、此処では陰極は 0(V)に保つとしておく、

上述の近似値計算では、此等の肝要な要素の内で一応 採り上げられ得る処の Wehnelt の電位の変化や、陰極 先端の Wehnelt 面よりの引込みの変化に対する電位分 布の影響を考える事にする.本稿に於ては、上述の様に Wehnelt 孔径を (2mm)とした時、陰極の引込みを Wehnelt 面より0(mm), 0.5(mm), 1(mm)に変化させ亦 夫々に対し Wehnelt 電位を -100(V), -1000(V), -2500(V)として与えた場合の、電位分布の計算結果 より求められた等電位線は概略を簡単に、以上の図に紹 介するに留める.第12図には此の計算を基にして求めて 陰極の先端軸上0.25(mm)の点の電位を等しくする為に は夫々の引込みの陰極配置に対して、Wehnelt に与う るべき電位 Vw を求めた.第13図には Wehnelt の電 位 Vw を各種の引込みの陰極に対して等しく押えた時, 陰極の先端 0.25(mm)の点の電位を示した.

第14図には 陰極の先端 0.25(*mm*) の点の電位を 400 (*V*)又は 600(*V*)に夫々等しくする時, 陰極上に落ち込 む零電位線の位置を示した.

第15図は夫々の Wehnelt 電位 *Vw* に対する軸上の 零電位線の位置を正す.

3. 結 論

以上は筆者の行った計算例であるが、此れ丈から判る 事柄を要約してみる.

実際の電子顕微鏡用電子銃に要求される事は

- a) 成るべく Beam Current を少くして使用すること.
- b)空間電荷の影響を無くするために陰極先端電界を 強くすること。

である.

- a)の条件を充すためには零電位線が陰極先端になるべく近く落ち込んで,電子放出面積を小さくすること
- b)の条件には陰極先端の電位が高い事.
- であって, a) b) の条件には, 図示した例でも判る様に 陰極の先端の引込みをなるべく少なくして Wehnelt に与える負電位は, 適当に高くする事.

に依って充される.

此の事は実際の電子銃の実験上に於ても極めて重要なこ とである.

Ⅲ 電子軌道の算出及び Hollow Beam の成因に就いて

1. Hollow Beam の観察

電子銃の Wehnelt 孔に対する陰極先端の引込み位置

が前節の 結論の様に 定められる時は,実験的に, Electron Beam の性質は Wehnelt 電圧 p_u と陽極電圧 p_a との比

$$\eta = \frac{\varphi_w}{\varphi_a}$$

(1)

に依り決定される.実験上では,陽極板の次に(下方に)Lens も絞りも入れないで,螢光板のみを入れて,その発光状態を観測する時, φ_w を小さい負の値から漸次大きくする過程に於て, η の小さい間はその様相自体にも変化はあるのであるが,要するに第16図の様に中央部が暗くその周辺部が明るい環状の発光を示す.此は中央

部の電子密度が低く,周辺部が ある処迄は密度が高い訳である が,斯る状態の螢光板発光を示す BeamをHollow Beamと称して いる.前節の電位計算を続行させ Wehnelt 孔の端の厚さやその形

第16 図 状,特に陰極の先端を Hair Pin 型に可成り近似し得たので,此の節では,陰極表面(殊 に先端附近)より熱電子放射させた場合の電子軌道の算 出を行い Hollow Beam の成因を計算上より検討した 事を極く簡略に記して見たい.

2. 電子軌道の算出方法

爾来, 廻転対称の静電界に於ける電子軌道を示す微分 方程式は一般的に解く事は極めて困難である.電子顕微 鏡を使用する実際に於ては, 普通電子銃は, Hollow Beam を生ずる状態に於て使用するのでなく, 軸上の 輝度が高い状態で使用する, 換言すると Wehnelt の 負電位を増した状態で使用するのであるが, 此の場合に 於いて, 軌道方程式

 $2\varphi \frac{d^2 r}{dz^2} = \left(\frac{\partial \varphi}{\partial r} - \frac{\partial \varphi}{\partial z} \frac{dr}{dz}\right) \left(1 + \left(\frac{dr}{dz}\right)^2\right) \quad \dots \dots \dots (2)$

は、電子がZ軸に近く且平行若くは小なる角度で運動す ると仮定する近軸光線なる条件を考慮して改変すると(式の Reduction は一切省略するが)近軸光線に対する 軌道方程式としては

$$\frac{d^2r}{dz^2} + \frac{\varphi_0'}{2\varphi_0} \frac{dr}{dz} + \frac{\varphi_0''}{4\varphi_0} r = 0 \qquad \dots \dots \dots \dots (3)$$

を得る. 茲に φ_{0} は (r=0), Z 軸上の電位で, $\varphi_{0}', \varphi_{0}''$ は夫々 Z についての微係数を表わす. 要するに(3)式を 解く事に依り, $Z \ge \varphi_{0}(z)$ が判れば,周知の様に夫に 依りrの値乃ち軸外の電子の位置 (r, z)が決定出来る. 斯くして,従来は専ら(3)式を解く事が行われて来た. 然し Hollow Beam を論ずるには,陰極面上任意の点 より,任意の角度をなして放射させた電子の軌道を論ず

るので,近軸光線に対する(3)式を解いて得た結果は不 適当と考えられるので,軌道方程式の原の式に戻って考 え,此を電子計算機を使用して解く事にした.その方法 は色々と考案出来ると思うが,先づ(2)式に戻って, φ は格子点上に於ては既知なものと言えるから, $\frac{\partial \varphi}{\partial r}, \frac{\partial \varphi}{\partial z}$ をその格子点の近傍に於ける電界 *Er*, *Ez* 成分として 此も小区域に於ては一定と考えられる計算可能なものと なり,小区域に於ける *r* の値は少くとも *z*, φ , $\frac{\partial \varphi}{\partial r} =$ -Er, $\frac{\partial \varphi}{\partial z} = -Ez$ に特定値を与えて,(此の場合計算区 域が異なれば *Z* は勿論, φ , $\frac{\partial \varphi}{\partial r}, \frac{\partial \varphi}{\partial z}$ も亦その区域に対 する値を採る事は言う迄もないが)その区域毎に求まる 事が推論 されるから,此を計算機に於て工夫して求め た。此は Runge-Kutter 法に依り或る程度の正確な値 を得る事が出来たが,本稿ではその詳細には触れる余裕 がない.

第2の方法は所謂運動方程式

$$m\frac{d^{2}r}{dt^{2}} = -eEr = e\frac{\partial\varphi}{\partial r}$$

$$m\frac{d^{2}z}{dt^{2}} = -eEz = e\frac{\partial\varphi}{\partial z}$$
(4)

を解く事である. Hollow Beam の問題以来,此を主 に使用しているので,此の式の電子計算機での解法の要 点を述べると,(4)式を解くと勿論

$$Z = -\frac{e}{2m} E_{z} t^{2} + V_{z_{0}} t + Z_{0}$$

$$r = -\frac{e}{2m} E_{r} t^{2} + V_{r_{0}} t + r_{0}$$
(5)

と書けるが(5)式の V_{Z_0} , V_{r_0} , Z_0 , V_0 が分れば, $t \in \mathcal{N}$ ラメーターとして, Z, r, が求められる.

電界の計算法法は,

第17図に於て格子(此の場合は正方格子)ABCDの 内部の電界は、一様とし、ABCD点の電位を夫々 $V_{i\cdotj}, V_{i+1\cdot j}, V_{i+1,j+1}, V_{i\cdot j+1}$ とすれば、電界 Ez, Er は次式で求める. L は格子間距離である.

軌道計算するには、第18図に於て、Aから出た電子が Z方向え1格子間隔進む時間を計算し、その時間でr方 向え進む距離を計算する.然しA1の様にr方向えは1 格子間隔以上電子が飛ぶことがある.この時は正方形A BCDの中で計算された電界を用いる為に誤差が大きく なると考えられるから、r方向え進む距離が1格子間隔 以上になる場合は計算をやり直して、r方向えAから1 格子間隔進む時間を計算し、その時間でZ方向え進む距

離を計算させた. 第19図. 然し次に1格子間隔Z方向え 進む時間を計算する時用いる電界はBB'C'Cの正方形か ら求める電界を使用する為都合悪くなる. 其処で第19図 でAから出た電子が A_1 に達した時,つぎにZ方向え飛 ぶ距離は A_1C とし,此の距離だけ電子が飛ぶ時間を計 算し,その時間でr方向え飛ぶ距離を計算する.次に (5)式では z_0, r_0 は各計 算段階の初位置, Vz_0, Vr_0 はその位置での速度を示す訳であるから,次の段階を計 算する時の速度は

$$V_{2} = -\frac{e}{m}Et + V_{1}$$

とする. E は X_1 と X_2 の間の電界で V_1 は X_1 の点の速度, V_2 は X_2 の点の速度である.

軌道算出例

実際の Hair Pin 型陰極の先端の形状に近似を進めて 電位計算を行ったものとして, 第27図に示す段階のも

れる2格子間より放射される電子は遠方での到達点については、此の両格子よりの電子の中間に在ると言う仮定をした.亦単位面積当りの放射電子数は、加熱温度を一定として、何処でも放射面に於ては一定密度であると仮定した.実際の使用温度は $2500(^{\circ}K)$ と仮定した時、放射熱電子の初速度は $0(eV) \sim 0.3(eV)$ 程度の Energy を有ち、その放射方向は放射面に対して $0^{\circ} \sim 180^{\circ}$ の角度範囲に分布すると考うるべきであるが、筆者は、種々の

放射可能な格子点より,上述の energy の範囲で上述の 角度範囲の電 子を多数採って,その描く軌道の傾 向を視たが,結論としては,同一格 子点よりの放射電子の初速度 Vector の差は, 陰極放射後暫時進む間 の軌道の形成には差を示すが, 軌道 全体の傾向を決める肝要な事は放射 位置が何処かと言う事である。第20 図及び 第21図は 初速度が 0.19(eV) で陰極より光軸に平行又は垂直に放 射された電子の軌道を1例として示 した. 陽極電圧 50×10³ (V), Wehnelt電圧-1000(V), Wehnelt 孔 径2(mm) 陰極先端の引込み 0(m m), 陰極の太さ 0.25(mm) の例で ある, 猫仮想観測面は陰極先端より 陽極側 1.65(mm) の軸上 で軸に垂 直に立てた平面とした。第22図は光 軸に平行, 第23図は垂直に放射した 電子の夫々到達面上での電子密度の

平均値分布を軸よりの距離に対して示したものである. 第24図は平行,第25図は垂直に陰極より放射された電子 の夫々放射位置と到達面との関係を示した.此の場合電 子密度分布は如何にして計算したか一言する.

前述の様に、相隣れる格子点間(放射点間)の位置より 放射した電子は遠方の到達点では、2格子(放射点)より の放射電子の到達点の間に在るとの仮定より、観測面に 於いては、相隣れる放射点よりの電子の到達点が軸より

第 27 図

r₁ 及び r₂ の位置に在るとすれば,その中間より放射し た電子は、凡てを考えると r1 及び r2 を半径とする円に 依り囲まれる円環内に在る筈である. (陰極の放射点は 全体としては放射円周になるから、到達点も、陰極を回 転体として考えると、全体としては到達円になる). 故 にその円環の面積を求めておき,放射2格子間より計算 される放射陰極面積が計算されれば、此れが言わば放射 電子数に比例する訳であるから、この後者の面積を前者 の円環面積で割れば、同様な計算を他の格子間について も行う事に依り,此等の値の相対関係が,一応求むる電子 密度分布の平均値を比較する要素となる。第22図,第23 図に示す様に、Wehnelt 電圧-1000(V) の例に於ては 軸に近い範囲の電子密度の相対値が、軸より遠ざかった 或る範囲迄のものに比して,遙かに低い事が判る.換言 すれば, 螢光板上の発光は軸附近(中心附近)が弱く, 周囲が或る範囲迄は可成り強く発光している事を示して いる訳である.乃ち円環状の発光する事を示す.以上は

断った様に陰極面を軸に平行と, 垂直に出た電子につい てのみ計算したが, 前述の様に他の初速度を有つ放射電 子に就いても似た平均電子密度分布を示して, 中央部に 於て極めてその値が小なる事が言えた. 要するに全体と して円環状の 発光を行い Beam は Hollow Beam を形成している事が 説明出来た.

第26図は放射陰極表面附近の電界 を示す. 猶ほ g~h の範囲は電界が 低く空間電荷制限領域と推察し得る ので, 電子を放射せしめる事は止め た. 筆者の計算例は陰極先端と陽極 間は 10(mm) 陰極直径は 0.25(m m)の例で,仮想観測面を陰極先端 1.65(mm)の位置に置いてあるが, 実験的には陽極面より遙か後方で観 測する.此の観測面の位置の差は計 算結果に如何に影響するか. 第27図 には、陰極附近の等電位線の有様を 示してある. (Wehnelt-1000(V) の計算例の場合である). 此に依っ ても推察出来る様に,1.65(mm)の位 置に在る仮想観測面附近は,等電位 線は殆んど平行していて, 軸には垂 直である. 多少の彎曲は認められる 結果1.65(mm)の面を通過した後電 子は必ずしも今迄の軌道の延長方向 とは言えず, 僅少の拋物線化は起る が然し此れは僅少で問題とならず, 密度分布の 大勢には影響を 与えず 1.65 (mm) の点での Hollow Beam の成因説明で 差し支え無い と 考え る. 猶 Hollow Beam の形状に関 しても, 陰極先端が Hair Pin 型で あるか, 先端が曲率半径 1μ 程度で その根本の太さが 0.2mm 程度の 所謂 Point Flament 型であるかに 依り当然差を生じて来るが Hollow Beam の出来る原因については此の 計算で定性的に明らかになったと言 える.

猶 Wehnelt の負電位を -1000 (V) より増加させて行くときの, 陰極よりの電子放射領域の変化及 び, Beamの形状変化を第28図より 第31図に示した.要するに負電位の 高い時は前節の結論の様に放射領域 は先端部に限られ, Beamの広がり

は狭まってくる.遂には放射電子は光軸に交はる軌道を 描き所謂 Cross Over Point を作る.普通銃は此の状 態に於いて使用する.但し此の説明図は先述の Hollow Beam の計算例の陰極近似より1段階前の近似の陰極形

第 32 図

である.又上下対称であるから上の部分のみ書いてある.

附 記

電位計算を行うに当って、電極の表面が最初より値の判っている境界となるが、その境界線は直線でなく、曲線を示す事が多くなる.此の事は Wehnelt の孔端を境界とした時にも言える訳であるが、斯る境界の近くの格子点の電位を計算するには第1節の $R_{i,j}^{(k)}$ (4) を次の如く改変する.

此を使用して計算しても、陰極境界を格子点を結んで出 来る直線にしても、先述の Hollow Beam の計算例の 程度に近似を進めた陰極の場合では、その周囲の格子点 の電位分布には、格段な変化は認められない.

軌道を放射させる点にしても,斯る曲線境界面の時, 陰極表面格子点以外の曲面上の点を選ぶ事も可能である が,此等の詳細は本稿では述べる事は一切省略する.

むすび

以上筆者の此れ迄行った電子計算機を使用しての計算 結果より,その内数種の例のみを挙げて,その概略を説 明した.

電位分布計算にしても、軌道計算にしても、その方法 には今後も精度及び計算速度の向上と言う点に於て充分 考察すべき点を多々痛感するが、もう一つ望ましい事は 冒頭にも一寸触れたが、広範囲の状況を成るべく短時間 に精度よく摑み度いのであって、此の事は実験上からの 条件や要請を充分に考慮して決めるべき要素が多分にあ るが、出来る事なら筆者の使用した計算機の10倍程度の 能力のあるものが望ましいと切に思う.

終りに,実験上の観点より色々御示唆を頂いた名古屋 大学の丸勢進教授及び存分に電子計算機を使用する機会 を与えられた大学当局や亦使用に当って御協力下さった 計算機室の小林敏子氏に心より御礼申し上げます.

参考文献

Relaxation Methods D.N.de G. Allen