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A Remark on Random Walks on Zd

Zd

Yuji HASHIMOTO†

Abstract. We consider the random walks on the state space Zd. It is well known that the simple random

walk is recurrent for d = 1, 2 and transient for d 3 and that the non-symmetric Bernoulli random walk

is transient for any d. In this paper, we consider the random walks of mixed type which are not spatially

homogeneous and give the examples of recurrent random walks of this type.

1. Let Zd be the space of d-dimensional integers, that is, the set of lattice points

x = (i1, · · · , id), (ik is an integer for k = 1, · · · , d).

We consider a particle starting at the origin of Zd and moving from x to y in Zd at each step with the

probability p(x, y) satisfying the following conditions

p(x, y) 0,
∑
y∈Zd

p(x, y) = 1.

The motion of this particle is called a random walk on the state space Zd with the transition probabilities

{p(x, y)}.
Let S0, S1, S2, · · · be the sequence of random variables whose ranges are contained in Zd. The sequence is

called a Markov chain if

P [Sn+1 = y |S0 = x0, S1 = x1, · · · , Sn−1 = xn−1, Sn = x] = P [Sn+1 = y |Sn = x]

for every n and x0, x1, · · · , xn−1 in Zd, where P [A] denotes the probability occurring of the event A. The

random walk starting at the origin 0 is the Markov chain with S0 = 0 and P [Sn+1 = y |Sn = x] = p(x, y).

We consider the random walk on Zd and set

f2n = P [S0 = 0, S2 ̸=0, · · · , S2n−2 ̸=0, S2n = 0].

The probability f2n is the probability of the return to the origin for the first time after 2n steps. Therefore,

f =
∞∑

n=1

f2n

is the probability of the return to the origin infinitely often. When f = 1, the random walk is called recurrent

and when f < 1, the the random walk is called transient.

The random walk on Z with the transition probabilities

p(i, i+ 1) = p, p(i, i− 1) = q, p(i, j) = 0 (j ̸= i+ 1, i− 1) (0 < p < 1, p+ q = 1)

is called the Bernoulli random walk. When p = q, the walk is called symmetric and when p ̸= q, the walk is

called non-symmetric. The symmetric Bernoulli random walk is usually called the simple random walk. The

symmetric random walk is recurrent and the non-symmetric random walk is transient.

In this paper, we shall consider the recurrence or transience property of the mixed random walks of these two

types. The method used here is the combinatorial one by counting the number of paths of the random walk,

which is found in Feller[1].

2. We consider a random walk on Z. Let S0, S1, S2, · · · be the sequence of random variables of this random

walk. We plot the points (0, 0), (1, S1), · · · , (n, Sn) in tx-plane and connect these points by the line segments

successively. We call it the path of length n.
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We denote by L[A] be the number of paths satisfying the condition A. The number of paths from (0, 0) to

(0, 2n) is denoted by U2n and the number of paths from (0, 0) to (0, 2n) without touching or crossing the t-axis

is denoted by F2n. It is evident that U2n = 2nCn. For F2n, we have the following proposition.

Proposition 1

F2n = 1
2n−1 2nCn

Proof

The proof is found in Feller[1]. For the sake of completeness, we give the proof.

F2n = 2L[S1 = 1, S2 > 0, · · · , S2n−2 > 0, S2n−1 = 1]

= 2 {L[S1 = 1, S2n−1 = 1]− L[S1 = 1, Sk = 0, S2n−1 = 1] } (for some k)

Here we have L[S1 = 1, Sk = 0, S2n−1 = 1] = L[S1 = −1, S2n−1 = 1] by the reflection principle.

F2n = 2 {L[S1 = 1, S2n−1 = 1]− L[S1 = −1, S2n−1 = 1] }

= 2 { 2n−2Cn−1 − 2n−2Cn } = 2 (1− n−1
n ) 2n−2Cn−1

= 2
n 2n−2Cn−1 = 1

2n−1 2nCn Q.E.D.

We consider the random walk with transition probabilities

p(0, 1) = p, p(0,−1) = q (p+ q = 1, p > q),

p(i, i+ 1) = p(i, i− 1) = 1
2 (i ̸= 0)

and call it the random walk of type I. Further we consider the random walk with transition probabilities

p(0, 1) = p(0,−1) = 1
2 ,

p(i, i+ 1) = q, p(i, i− 1) = p (i > 0), p(i, i+ 1) = p, p(i, i− 1) = q (i < 0), (p+ q = 1, p > q)

and call it the random walk of type II.

Theorem 1

The random walks on Z of type I and of type II are recurrent.

Proof

For the type I, the probability of the return to the origin for the first time after 2n steps is given by

Proposition 1.

f2n = P [S0 = 0, S2 ̸=0, · · · , S2n−2 ̸=0, S2n = 0].

= 1
2 {P [S0 = 0, S1 > 0, · · · , S2n−1 > 0, S2n = 0]+P [S0 = 0, S1 < 0, · · · , S2n−1 < 0, S2n = 0] }

= 1
2 {

1
2n−1 2nCn(

1
2p)(

1
2 )

2n−2 + 1
2n−1 2nCn(

1
2q)(

1
2 )

2n−2 }

= 1
2n−1 2nCn(

1
2 )

2n

According to the recurrence of the simple random walk,

f =
∞∑

n=1

f2n =
∞∑

n=1

1
2n−1 2nCn(

1
2 )

2n = 1.

For the type II, the probability of the return to the origin for the first time after 2n steps is given by

Proposition 1.

f2n = P [S0 = 0, S2 ̸=0, · · · , S2n−2 ̸=0, S2n = 0].

= 1
2 {P [S0 = 0, S1 > 0, · · · , S2n−1 > 0, S2n = 0]+P [S0 = 0, S1 < 0, · · · , S2n−1 < 0, S2n = 0] }

= 1
2 {

1
2n−1 2nCn(

1
2p)(pq)

n−1 + 1
2n−1 2nCn(

1
2p)(pq)

n−1 }

= 1
2q

1
2n−1 2nCn(pq)

n

According to the transience of the non-symmetric Bernoulli random walk,

f =

∞∑
n=1

f2n = 1
2q

∞∑
n=1

1
2n−1 2nCn(pq)

n = 1
2q (1−

√
1− 4pq ) = 1

2q (2q) = 1. Q.E.D

28



A Remark on Random Walks on Zd

3. We consider the random walk on Z2. Let S0, S1, S2, · · · be the sequence of vector valued random variables

of this random walk. We plot the points (0, (0, 0)), (1, S1), · · · , (n, Sn) in the txy-space and connect these points

by the line segments successively. We call it the path of length n.

The number of paths from (0, (0, 0)) to (2n, (0, 0)) is denoted by U2n and the number of paths from (0, (0, 0))

to (2n, (0, 0)) without touching or crossing the t-axis is denoted by F2n. It is shown that U2n = ( 2nCn)
2.

But, the proposition similar to Proposition 1 cannot be shown explicitly. Nevertheless, the theorem similar to

Theorem 1 can be shown as well.

As in 2, we define the random walks of type I and type II. For the type I, the transition probabilities are

given as follows.

p((i, 0), (i, 1)) = p
2 , p((i, 0), (i,−1)) = q

2 , (p+ q = 1, p > q)

p((i, j), (i, j + 1)) = p((i, j), (i, j − 1)) = 1
4 (j ̸= 0)

p((i, j), (i+ 1, j)) = p((i, j), (i− 1, j)) = 1
4

For the type II, the transition probabilities are given as follows.

p((i, 0), (i, 1)) = p((i, 0), (i,−1)) = 1
4

p((i, j), (i, j + 1)) = q
2 , p((i, j), (i, j − 1)) = p

2 (j > 0), (p+ q = 1, p > q)

p((i, j), (i, j + 1)) = p
2 , p((i, j), (i, j − 1)) = q

2 (j < 0), (p+ q = 1, p > q)

p((i, j), (i+ 1, j)) = p((i, j), (i− 1, j)) = 1
4

Theorem 2

The random walk on Z2 of type I is recurrent.

Proof

Let the number of paths returning to the origin for the first time after 2n steps be F2n. We take a

path of this type. Let the number of paths above or below the tx-plane be k, with k1 above and k2 below

(k1 + k2 = k). The probability of this path is

( 14
p
2 )

k1( 14
q
2 )

k2( 14 )
2n−2k.

Considering the reflection on tx-plane, there are 2k paths of this type. The probability of these paths is∑
k1+k2=k

kCk1(
1
4
p
2 )

k1( 14
q
2 )

k2( 14 )
2n−2k

= ( 14 )
k1+k2( p

2 + q
2 )

k( 14 )
2n−2k = ( 14 )

2n−k( 12 )
k = ( 14 )

2n2k.

Therefore we have

f2n = F2n(
1
4 )

2n.

According to the recurrence of the simple random walk on Z2,

f =
∞∑

n=1

f2n =
∞∑

n=1

F2n(
1
4 )

2n = 1. Q.E.D

For the random walk on Z2 of type II, the calculation of f is not completed yet. It is probable that this

random walk will be recurrent. As for the random walks on Z3, we can prove in the same way that the random

walk of type I is transient. However, the recurrence or transience of the random walk of type II is not known.

4. We further investigate the random walk on Z of type I. We consider the number of paths from (0, 0) to

(0, 2n) touching or crossing the t-axis for k times without including (0, 0) and denote it by F
(k)
2n .

Proposition 2

F
(k)
2n = k

2n−k 2n−kCn2
k

Proof

We denote L2n−k,k the number of paths from (0, 0) to (2n− k, k).

F
(k)
2n = L2n−k,k 2

k = k
2n−k 2n−kCn 2

k Q.E.D

Next we consider the number of paths of length 2n touching or crossing the t-axis for k times without including

(0, 0) and denote it by H
(k)
2n .
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Proposition 3

H
(k)
2n = 2n−kCn 2

k

Proof

We can represent H
(k)
2n by F

(k)
2n .

H
(k)
2n = F

(k)
2n + F

(k+1)
2n + · · ·+ F

(n)
2n

= ( 2n−kCn2
k − 2n−k−1Cn2

k+1) + ( 2n−k−1Cn2
k+1 − 2n−k−2Cn2

k+2) + · · ·+ 2n−nCn2
n

= 2n−kCn2
k Q.E.D

We consider the probability of the return to the origin up to and including 2n steps for k times and denote

it by h
(k)
2n .

Theorem 3

h
(k)
2n = 2n−kCn (

1
2 )

2n−k

Proof

We take a path of type F
(k)
2n , then the number of paths above or below the t-axis is k, with k1 above

and k2 below (k1 + k2 = k). The probability of this path is

( 12p)
k1( 12q)

k2( 12 )
2n−2k

Adding these terms for 2k paths of reflection on the t-axis, we have∑
k1+k2=k

kCk1(
1
2p)

k1( 12q)
k2( 12 )

2n−2k

= ( 12 )
k1+k2(p+ q)k( 12 )

2n−2k = ( 12 )
2n−k = ( 12 )

2n2k.

For the paths of the other types, the number of paths above or below the t-axis is k+ 1, we have a similar

equality. Therefore,

h
(k)
2n = 2n−kCn 2

k ( 12 )
2n = 2n−kCn (

1
2 )

2n−k. Q.E.D

Theorem 1 is the same as in the case of the simple random walk. Therefore, we have

h
(1)
2n > h

(2)
2n > · · · > h

(n)
2n ,

which shows that the probability of the return to the origin for k times after 2n steps decreases as k increases.
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