シーケンシャルインジェクション分析

# Sequential Injection Analysis of Trace Iron Using

2,4,6-Tris(2-pyridyl)-1,3,5-triazine

北澤咲良†, 手嶋紀雄†, 酒井忠雄†

Sakura Kitazawa<sup>†</sup>, Norio TESHIMA<sup>†</sup> and Tadao SAKAI<sup>†</sup>

Abstract Flow injection analysis (FIA) was conceived by Ruzicka and Hansen on 1975 as the first generation of non-segmented flow chemical analysis. FIA is a promising technique for being rapid, reproducible, reducing reagent consumption and automated, compared with chemical analysis based on a manual procedure. Thereafter, sequential injection analysis (SIA) was introduced on 1990 as the second generation of FIA. SIA is a versatile technique based on programmable flow controlled by a computer, and its reagent consumption is less than that of FIA. In the presence of a suitable reducing agent, iron(II) reacts with 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) to form a purple iron(II)-TPTZ complex ( $\lambda_{max} = 593$  nm). This paper describes a SIA method for the determination of trace iron.

# 1. 緒 言

健康な成人中の鉄の総量は,約4gであり,その約 65%が赤血球中の血色素鉄(ヘモグロビン)であり,約 30%が貯蔵鉄(フェリチンとヘモジデリン)として肝や 膵などの臓器内に存在する<sup>1)</sup>.この他,3~5%が筋細胞 中のミオグロビン(ヘモグロビンと同様にヘムタンパク に属する)である.血清中の鉄は,トランスフェリンと 結合したトランスフェリン結合鉄であるが,その鉄量は 全体の約0.1%に過ぎない.しかし,このトランスフェ リンは,鉄の運搬体として造血に深く関与している.ま た,血清鉄濃度の値が低いと鉄欠乏性貧血が,高いとへ モクロマトーシス(全身の臓器に鉄が過剰に沈着する) の疑いがあるなど,血清鉄は様々な疾患と密接に関係し ている.

現在,血清鉄の定量は,2-ニトロソ-5-[*N-n*-プロピル -*N*-(3-スルホプロピル)アミノ]フェノール (Nitroso-

\*愛知工業大学工学部応用化学科(豊田市)

PSAP)を用いる比色分析によって行われている<sup>2)</sup>.総合 病院などの施設には、この Nitroso-PSAP 法を始めとす る種々の方法を導入した多項目・多検体自動分析計が導 入されているが、高額で一般の病院には普及していない.

1975年に Ruzicka と Hansen ら<sup>3</sup>は化学分析の自動化 を達成するフローインジェクション分析(FIA)法を提 唱した.内径 0.5 mm 程度のテフロン管内に,試薬溶液 を一定流速で送液し,数十から数百µLの試料溶液を注 入し,テフロン管内の流れの中で化学反応を進行させ, フローセル付きの検出器で FIA シグナルを検出するも のである.著者のグループでは,この FIA 法により, 血清中の銅と鉄<sup>4)</sup>,あるいは銅,鉄,亜鉛<sup>5)</sup>を同時定量 する分析システムを構築し,各種疾患との関連性につい て検討した.

しかし、FIA 法は試薬溶液を連続的に送液するため、 試料と未反応の試薬が廃棄される. バッチマニュアル法 に比べれば、試薬消費量は少ないものの、更なる改善が 求められていた中、Ruzicka と Marshall ら<sup>6</sup>は、第二世 代のFIA として、シーケンシャルインジェクション分



Fig. 1 Diagram of sequence in holding coil (HC) (upper) and SIA-LOV system for the determination of iron(III) (bottom). CS, carrier water; SP, syringe pump; 2-SV, 2-way selection valve; HC, holding coil; 6-SV, 6-way selection valve; FC, flow cell; D, spectrophotometer; W, waste.

析(SIA)法を開発した.この方法は、1回の測定に必要な量(数十から数百μL)だけの試薬溶液と試料溶液 とをテフロン細管内で混合させ検出するため、更なる省 試薬化が進んだ<sup>7)-9)</sup>.

そこで本研究では、SIA 法による血清鉄の分析法の確 立を指向して、2,4,6-トリス(2-ピリジル)-1,3,5-トリアジ ン(TPTZ)を用いる微量鉄の SIA 吸光光度法の実験諸 条件を検討したので報告する.

#### 2. 実 験

#### 2.1. 装置

バッチマニュアル法におけるスペクトルの測定には, 日本分光製紫外・可視分光光度計(V-550型)を使用した.

SIA システムとして, FIAlab Instruments 製 FIAlab 3000 を用いた. このシステムの基本要素は, Fig.1 に示すよ うに, 2.5 mL のシリンジポンプ (SP), 2 方セレクショ ンバルブ (2-SV), 試薬と試料を吸引するホールディン グコイル (HC), 6 方セレクションバルブ (6-SV) であ る. この 6-SV 上には, アクリル樹脂製のユニットが取 り付けられている. このユニットには, 流路とフローセ ルが精密加工技術により形成されており, 化学反応を行 う場ならびに検出する場がバルブ上に集約されている. これは, SIA-ラボ・オン・バルブ (SIA-LOV) と呼ばれ

Table 1 Operation sequence of the SIA-LOV system

| Step | 6-SV port position | Flow rate / $\mu L \min^{-1} a$ | Description                                                                             |
|------|--------------------|---------------------------------|-----------------------------------------------------------------------------------------|
| 1    | 1                  | 20 (↓)                          | Aspiration of 250 $\mu$ L acetate buffer                                                |
| 2    | 3                  | 20 (↓)                          | Aspiration of 150 µL TPTZ                                                               |
| 3    | 6                  | 20 (↓)                          | Aspiration of 50 $\mu$ L HONH <sub>3</sub> Cl                                           |
| 4    | 5                  | 20 (↓)                          | Aspiration of 75 $\mu$ L Fe(III)/Std.                                                   |
| 5    | 2                  | 50 (↑)                          | Transportation of reaction mixture<br>to detector to monitor the<br>absorbance at 595nm |

a.  $(\downarrow)$ , direction of syringe pump motion for aspiration (forward flow); ( $\uparrow$ ), direction of syringe pump motion for transportation (reverse flow).

る<sup>10)</sup>分析システムである. 6-SV 上のユニットには,光 ファイバーケーブルが接続されており,タングステン-ハロゲンランプ光源 (Ocean Optics 製, USA, LS-1型) からの光がフローセルを通過し,透過光が紫外可視分光 光度計 (Ocean Optics 製, USA, USB 2000型) に導か れ,吸光度が検出される.以上の SIA-LOV システムは, すべてコンピューターにインストールされている FIAlab Instruments 製の制御プログラムにより自動的に 制御される.

また, 溶液の pH は堀場製作所製の pH メーター (F-22 型)を用いて測定した.

#### 2.2. 試薬

試薬溶液の調製及び希釈に用いた水はすべて ADVANTEC製の超純水製造装置(GSH-210型)により 精製された超純水を用いた.

鉄(III)標準溶液:原子吸光分析用の 1000 ppm 鉄標準 溶液(和光純薬製)を 0.01 M 硝酸で適宜希釈して用い た.

TPTZ 溶液 (5.0×10<sup>-2</sup> M): 2,4,6-トリス(2-ピリジ ル)-1,3,5-トリアジン (和光純試薬工業製, MW = 312.33) 0.7808 g を 0.01 M 硫酸に溶解し, 同濃度の硫酸で 50 mL に定容した. この原液を適宜希釈して用いた.

塩酸ヒドロキシルアミン溶液(10 %w/v):塩酸ヒド ロキシルアミン(和光純薬工業製, HONH<sub>3</sub>Cl, FW = 69.49) 1.0gを水で溶解し、10mLに定容した.

酢酸塩緩衝液:酢酸水溶液と酢酸ナトリウム水溶液を 適宜混合し,目的の pH 緩衝液を得た.

りん酸塩緩衝液:りん酸二水素ナトリウム水溶液とり ん酸水素二ナトリウム水溶液を適宜混合し,pH 6.0 の緩 衝液を得,pH の影響を検討する実験で使用した.

# 2.3. 標準操作

SIA システムの動作を Table 1 に示す. Fig. 1 に示すよ うに、6-SV ポート 1 に 0.01 M の酢酸塩緩衝液 (pH 4.0), ポート 2 に検出器, ポート 3 に 0.01 M TPTZ 溶液, ポ ート 5 に鉄(III)標準溶液, ポート 6 に 10 %w/v 塩酸ヒド ロキシルアミン溶液をセットし、シリンジポンプにより 吸引・吐出の操作を行った.

最初に、シリンジポンプ上部の 2-SV をキャリアーの 水を吸引する方向に切り替え、シリンジポンプ内に水を 吸引する. 次に 2-SV を HC 側に切り替え、HC および 検出器に繋がるポート 2 への流路内を洗浄する. 次に、 6-SV を逐次切り替えながら、シリンジポンプの下方向 の動作により、酢酸塩緩衝液、塩酸ヒドロキシルアミン、 TPTZ、Fe(III)標準溶液の順に HC 内へと吸引する. この 際、HC 内では各試薬と標準溶液が混合される. シリン ジポンプの上方向(吸引時とは逆方向)の動作により、 反応溶液を検出器へと送液し、吸収極大波長である 595 nm における吸光度を観測することにより、SIA ピーク を得た.

#### 3. 結果と考察

### 3.1. 吸収スペクトル

鉄(III)は適切な還元剤の共存により鉄(II)に還元され, この鉄(II)は、TPTZ と 1:2 組成の赤紫色のキレートを生 成する<sup>11)</sup>. バッチマニュアル法により、このキレートの 吸収スペクトルを以下の手順で測定した. 10 ppm の鉄 (III)標準溶液 0, 2, 4, 6, 8, 10 mL をそれぞれ 50 mL メスフラスコにとり、10 %w/v の塩酸ヒドロキシルアミ ン溶液 1 mL, 1 M の酢酸塩緩衝液 (pH 4.5) 5 mL, 2.5 ×10<sup>-2</sup> M の TPTZ 溶液 5 mL を加えて、水で 50 mL に定 容した. よく振り混ぜたのち、吸収スペクトルを測定し た. 結果を Fig. 2 に示す. この結果より、以下の SIA に よる検討では、吸収極大波長である 595 nm における吸 光度を測定することとした.

# 3.2. 各試薬と試料のHC 内への吸引順(シーケンス) の影響

HC 内に試薬と試料を吸引する順序についての検討 を行った. 試薬 3 種と試料の合計 4 つの溶液を吸引する ので,その組み合わせは 24 通りとなる.これらすべて の検討結果を Table 2 に示す.その結果,2 ppm の鉄(III) を測定した際の吸光度と鉄(III)標準溶液の代わりに水 を用いる試薬空試験値との差(net)が,Table 2 内の(2) に示される"酢酸塩緩衝液,塩酸ヒドロキシルアミン, TPTZ,鉄(III)標準溶液"の順に吸引した場合に最大とな った.従って,以降の検討では,Fig.1の上部に示され るシーケンスを選択した.

#### 3.3. pH の影響

吸引する酢酸塩緩衝液の pH を 3.5~6.0 の範囲で変化 させ、2 ppm の鉄(III)を定量する際の吸光度への影響を 調べた. pH 3.5~5.5 は酢酸塩緩衝液を, pH 6.0 はりん 酸塩緩衝液を用いて調整した. 結果を Fig. 3 に示す. こ の結果より, net の値が最も高かった pH 4.0 を選択した.

#### 3.4. TPTZ 濃度の影響

吸引する TPTZ 溶液の濃度を 0.001~0.02 M の範囲で 変化させた. 結果を Fig. 4 に示す. net の値は, 0.01 M のときに最大となったので, TPTZ 濃度は, 0.01 M を選 択した.

#### 3.5. TPTZ 溶液の吸引体積の影響

吸引する TPTZ 溶液の体積を 50~200 μL の範囲で変 化させた. 結果を Fig. 5 に示す. この結果より, net の 値が最も良好であった 150 μL を選択した.



Fig. 2 Absorption spectra of iron(II)-TPTZ complexes.  $C_{\text{Fe(III)}}$  in ppm: (1), 0; (2), 0.4; (3), 0.8; (4), 1.2; (5), 1.6; (6), 2.0.  $C_{\text{TPTZ}}$ ,  $2.5 \times 10^{-3}$  M;  $C_{\text{Acetate Buffer}}$ , 0.1 M (pH 4.5),  $C_{\text{HONH3CI}}$ , 1 %w/v.

Table 2 Absorbance values of various sequence for SIA determination of iron(III)

| Sequence of aspiration                    | 2.0 ppm Fe(III)         | blank                  | net                     |
|-------------------------------------------|-------------------------|------------------------|-------------------------|
| (1)Buffer-TPTZ-StdHONH <sub>3</sub> Cl    | $0.0157 {\pm} 0.000212$ | $0.144 \pm 0.00646$    | $0.128 \pm 0.00665$     |
| (2)Buffer-TPTZ-HONH <sub>3</sub> Cl-Std.  | $0.563 {\pm} 0.00610$   | $0.0103 \pm 0.000372$  | $0.552 \pm 0.00574$     |
| (3)Buffer-StdHONH <sub>3</sub> Cl-TPTZ    | $0.127 \pm 0.00108$     | $0.0275 \pm 0.000396$  | $0.0994 \pm 0.00095$    |
| (4)Buffer-StdTPTZ-HONH <sub>3</sub> Cl    | $0.0626 \pm 0.000429$   | $0.0438 \pm 0.000709$  | $0.0188 \pm 0.000285$   |
| (5)Buffer-HONH <sub>3</sub> Cl-TPTZ-Std.  | $0.0455 \pm 0.000485$   | $0.0235 \pm 0.000495$  | $0.0220 \pm 0.000505$   |
| (6)Buffe-HONH <sub>3</sub> Cl-StdTPTZ     | $0.186 \pm 0.00126$     | $0.0220 \pm 0.000113$  | $0.164{\pm}0.00135$     |
| (7)TPTZ-StdHONH <sub>3</sub> Cl-Buffer    | $0.0780 \pm 0.000173$   | $0.00830 \pm 0.000626$ | $0.0697 {\pm} 0.000492$ |
| (8)TPTZ-StdBuffer-HONH <sub>3</sub> Cl    | $0.0270 \pm 0.000418$   | $0.0186 \pm 0.000153$  | $0.00844 \pm 0.00844$   |
| (9)TPTZ-HONH <sub>3</sub> Cl-Buffer-Std.  | $0.0348 \pm 0.000722$   | $0.0104 \pm 0.0000702$ | $0.0244 \pm 0.000654$   |
| (10)TPTZ-HONH <sub>3</sub> Cl-StdBuffer   | $0.0828 \pm 0.000318$   | $0.0359 \pm 0.000404$  | $0.0469 \pm 0.000715$   |
| (11)TPTZ-Buffer-StdHONH <sub>3</sub> Cl   | $0.0838 \pm 0.00269$    | $0.0265 \pm 0.000547$  | $0.0573 \pm 0.00324$    |
| (12)TPTZ-Buffer-HONH <sub>3</sub> Cl-Std. | $0.0624 \pm 0.001335$   | $0.0128 \pm 0.000569$  | $0.0496 \pm 0.00135$    |
| (13)StdHONH <sub>3</sub> Cl-Buffer-TPTZ   | $0.0446 \pm 0.00296$    | $0.0296 \pm 0.000423$  | $0.0150 \pm 0.00382$    |
| (14)StdHONH <sub>3</sub> Cl-TPTZ-Buffer   | $0.0772 \pm 0.000907$   | $0.00608 \pm 0.000159$ | $0.0712 \pm 0.00104$    |
| (15)StdBuffer-TPTZ-HONH <sub>3</sub> Cl   | $0.186{\pm}0.00448$     | $0.0177 \pm 0.000257$  | $0.169{\pm}0.00458$     |
| (16)StdBuffer-HONH <sub>3</sub> Cl-TPTZ   | $0.0464 \pm 0.000565$   | $0.0298 \pm 0.000323$  | $0.0165 \pm 0.000529$   |
| (17)Std-TPTZ-HONH <sub>3</sub> Cl-Buffer  | $0.0539 \pm 0.000821$   | $0.0122 \pm 0.0000337$ | $0.0418 \pm 0.000794$   |
| (18)StdTPTZ-Buffer-HONH <sub>3</sub> Cl   | $0.0415 \pm 0.000295$   | $0.0125 \pm 0.00117$   | $0.0290 \pm 0.00131$    |
| (19)HONH <sub>3</sub> Cl-Buffer-TPTZ-Std. | $0.0836 \pm 0.00135$    | $0.0341 \pm 0.000838$  | $0.0495 \pm 0.000516$   |
| (20)HONH <sub>3</sub> Cl-Buffer-StdTPTZ   | $0.0692 \pm 0.000551$   | $0.0323 \pm 0.00252$   | $0.0369 \pm 0.00306$    |
| (21)HONH <sub>3</sub> Cl-TPTZ-StdBuffer   | $0.0605 \pm 0.000343$   | $0.00552 \pm 0.000278$ | $0.0550 \pm 0.000292$   |
| (22)HONH <sub>3</sub> Cl-TPTZ-Buffer-Std. | $0.0758 \pm 0.000473$   | $0.0199 \pm 0.000153$  | $0.0503 \pm 0.000436$   |
| (23)HONH <sub>3</sub> Cl-StdBuffer-TPTZ   | $0.0663 \pm 0.00217$    | $0.0113 \pm 0.000153$  | $0.0550 \pm 0.000689$   |
| (24)HONH <sub>3</sub> Cl-StdTPTZ-Buffer   | $0.0740 \pm 0.000416$   | $0.0100 \pm 0.000450$  | $0.0640 \pm 0.000798$   |
|                                           |                         |                        |                         |



\_

Fig. 3 Effect of pH on the absorbance.



Fig. 4 Effect of TPTZ concentration.



Fig. 5 Effect of aspiration volume of TPTZ solution.



Fig. 6 Effect of aspiration volume of acetate buffer solution.



Fig. 7 Effect of aspiration volume of iron(III) standard solution.

#### 3.6. 酢酸塩緩衝液の吸引体積の影響

吸引する酢酸塩緩衝液の体積を 150~400 μL の範囲 で変化させた. 結果を Fig. 6 に示す. この結果より, 250 μL を選択した.

#### 3.7. 鉄(III)標準溶液の吸引体積の影響

吸引する鉄(III)標準溶液の体積を 10~100 μL の範囲 で変化させた. 結果を Fig. 7 に示す.吸引体積が 75 μL を超えると, net 値が減少したので, 鉄(III)教授ン溶液 の吸引体積として 75 μL を選択した.

### 3.8. 検量線

以上の最適条件下において,鉄(III)の濃度を変化させ SIA シグナルを得た. SIA シグナルの吸光度を鉄(III)濃 度に対しプロットし,検量線を作成したところ,鉄(III) 濃度が 0~2.0 ppm の範囲で,相関係数 0.999 と直線性 の良好な結果が得られた.1時間当たり 24 検体の測定 が可能である.

# 4. 結 言

ここで堤唱した SIA は,1回の定量に必要な試薬と試 料の数百 µL を HC に吸引し,逆方向へ吐出する際に試 薬と試料が混合され,検出器に導入される方法である. この操作は全て PC で制御されるため,FIA と違い全自 動化されており,人為的誤差は極めて少ない.TPTZ の SIA への導入は初めてであり,独自のプロトコールを提 案した.本法は,環境・生体試料への多検体分析に有用 である.

# 文 献

- 1) 刈米重夫, 日本臨牀 ('85 年秋季増刊) 43 (1985) 532.
- 2) 松尾収二監修,前川芳明編集,"改訂3版臨床検査ディクショナリー", p. 111, (2004), (メディカ出版).
- J. Ruzicka, E. H. Hansen, Anal. Chim. Acta 78 (1975) 145.
- S. Gotoh, N. Teshima, T. Sakai, K. Ida, N. Ura: Anal. Chim. Acta, 499, 91 (2003).
- N. Teshima, S. Gotoh, K. Ida, T. Sakai: Anal. Chim. Acta, 557, 387 (2006).
- J. Ruzicka, G. D. Marshall, Anal. Chim. Acta 237 (1990) 329.
- 7) 酒井忠雄, 手嶋紀雄, ぶんせき 2001 (2001) 289.
- 8) T. Sakai, N. Teshima, Anal. Sci. 24 (2008) 855.
- 9) 手嶋紀雄, 酒井忠雄, ぶんせき 2010 (2010) 281.
- 10) J. Ruzicka, Analyst 125 (2000) 1053.
- 11) P. F. Collins, H. Diehl, G. F. Smith, Anal. Chem 31 (1959) 1862.