コンクリート内部で発生するA E の 原 波 形 解 析 に 関 す る 研 究

山田和夫

Source Wave Analysis of Acoustic Emission Occured in Concrete

Kazuo YAMADA

The acoustic emission (AE) source wave analysis was carried out to examine the fracture process of concrete. The measurement method of frequency transfer function was proposed and the applicability of proposed method was investigated. These functions for specimen and transducer were obtained experimentally by the electronic pulse technique.

When Eq. (4), in which the effects of characteristics of input and output wave were considered, was applied to calculate the frequency transfer function, the impulse wave was appropriate as input wave. The proposed method was available to the measurement of complex frequency transfer response.

The source wave of AE was determined by using the detected wave and measured frequency transfer functions.

1. まえがき

コンクリートの内部破壊機構の解明は, コンクリ ート系構造物の安全性を評価するうえで必要不可欠 であり、コンクリート工学における当面の重要な研 究課題の一つと考えられる。コンクリートの内部破 壊機構の詳細を明らかにするためには、まずひずみ 度の増大に伴うコンクリートの内部構造の変化、す なわち漸進的な微小ひび割れの発生・進展過程を追 跡・解明することが必要であり、このための手段と して、これまでにも各種の計測手法1)"が提案・実用 化されている。これらの計測手法の一つに材料内部 の微小破壊に伴って発生する応力波、すなわち Acoustic Emission (以下 AE と略記する) を計測し て材料内部の微視破壊機構を明らかにしようとする AE 法と呼ばれる手法がある。この計測手法は,材料 内部の変形、破壊などの微小変化を動的かつ高感度 で検出できるという点で、マイクロクラック観察法 などといった在来の計測手法よりも格段に優れてお り、近年コンクリート工学の分野においても注目を 集めている^{3),4)}。

著者も、コンクリートの微視的破壊機構を解明す るためにAE法を適用し、静的載荷時のAE挙動や 繰返し載荷時のカイザー効果並びにAEの周波数特 性など、コンクリート内部で発生するAEの基礎的 特性を調べるとともに、AE法による破壊源探査や 微視的破壊過程の追跡などを試み、AE法の妥当性 や可能性を確かめるための一連の検討を行ってき た⁵⁾⁻⁹。その結果、破壊源において発生した源AE波 形が試験体中を伝播した後、検出用変換子を含む AE計測系を介して検出された検出AE波形は、源 AE波形以外にコンクリート中を伝播するときの減 衰特性や計測系の特性などによっても影響を受ける ため、AE法を適用してコンクリートの内部破壊機 構を解明するためには、まずはこれらの影響を正確 に把握しておく必要があることを確かめえた。

これに対して、上記の AE の発生から検出までの 過程を時間に対して線形系であるものと仮定して定 式化を行い、検出 AE 波形から源 AE 波形を推定し ようとする原波形解析手法¹⁰⁾¹¹¹は、金属分野で開発 されたものであるが、AE の伝播・減衰特性および計 測系の特性の影響を除去することが可能であるた め、コンクリート工学の分野でも、AE 法を内部破壊 機構解明のための計測方法として確立するうえで、 有力な手法の一つになりうるものと期待されてい る。しかし、コンクリート工学の分野で AE の原波 形解析を試みた研究は極めて少なく¹²⁾⁻¹⁴⁾、その適用 性や適用限界などについては不明な点が多い。

本研究は、以上の点を踏まえて、AE 法をコンクリ ートの内部破壊機構解明のための有力な計測方法と して確立することを最終的な目的としているが、本 報では、まずコンクリート内部で発生する源 AE の 実態を正しく把握するための基礎的研究として、コ ンクリートに関する原波形解析手法を確立するうえ で必要な伝達関数の算定方法について一連の検討を 行うこととした。

2. 原波形解析の原理

AE の原波形解析は、前述のように、AE の発生か ら検出までの過程を時間に対して独立な線形である ものと仮定して定式化を行い、検出 AE 波形から源 AE 波形を推定しようとするものである。AE の伝播 経路を線形システム論によって定式化すると、検出 AE 波形 y(t)は、次式で与えられる。

 $y(t) = g_s(t) * g_m(t) * x(t)$ (1) ここに、

*:たたみ込み積分,

g_s(t):変換子を含む計測系の応答関数,

gm(t):媒体の応答関数,

x(t):源AE波形。

式(1)に逆たたみ込み積分を施すことによって,直接源 AE 波形 x(t)を求めることもできるが,式(1)を フーリエ変換すると,AE の入・出力関係は,次のよ うな簡単な積の形に変換される。

 $Y(j\omega) = G_s(j\omega) \cdot G_m(j\omega) \cdot X(j\omega)$ (2) $\subset \subset \mathcal{K},$

Y(jω):検出 AE 波形のフーリエ変換,

G_s(jω):変換子を含む計測系の伝達関数,

G_m(jω):媒体の伝達関数,

X(jω):源 AE 波形のフーリエ変換。

したがって,式(2)から $X(j\omega)$ を求めて,これを逆フ ーリエ変換すれば,源 AE 波形 x(t)を求めることが できる。これが原波形解析の原理である。 3. 伝達関数の算定方法の提案

3・1 伝達関数の算定方法

式(1)および式(2)からもわかるように,AEの原波 形解析を行うためには、計測系および媒体の伝達関 数を定量化することが必要である。変換子を含む計 測系と媒体の伝達関数 $G(j\omega) (=G_s(j\omega) \cdot G_n(j\omega))$ は、一般に式(3)に示すように、単位インバルス関数 を入力として加えたときの出力である応答関数のフ ーリエ変換として定義される。

y₁(t):単位インパルス関数を入力した時の出 力波。

また,単位インパルス関数を積分すれば単位ステ ップ関数となるため,この関係を利用すれば,伝達 関数は次のようにも書ける。

y₂(t):単位ステップ関数を入力した時の出力 波。

式(3)および式(3)から明らかなように、伝達関数 は、単位インパルス関数を入力したときの出力のフ ーリエ変換であると同時に、単位ステップ関数を入 力したときの出力を時間に関して1階微分したもの のフーリエ変換でもあることがわかる。しかし、理 想的な単位インパルス関数または単位ステップ関数 は現実には存在しないため、式(3)および式(3)の適用 性については、十分な検討が必要である。

これに対して、入力波が単位インパルス関数や単 位ステップ関数ではなくても、それらの入力波が既 知でありさえすれば、伝達関数を比較的簡単に求め ることができる。そのための最も簡単な方法は、実 験で対象としている周波数帯成分を含む波形が既知 の波を媒体に入力し、その入力波とそれに対する検 出波を計測することによって媒体の伝達関数G (jω)を算定する方法であろう。すなわち、媒体の伝 達関数は、入・出力波形のフーリエ変換の比として、 次のように求まる。

 $G(j\omega) = Y(j\omega)/U(j\omega)$ (4)

一方,伝達関数は,これが安定で線形応答が成立 する範囲では,様々な周波数の正弦波を媒体に入力 した場合の定常出力応答を測定して求めることもで きる¹⁵⁾。すなわち,定常状態では,

$$\lim_{t \to \infty} \mathbf{y}(t) = \lim_{t \to \infty} L^{-1} [G(\mathbf{s}) \cdot \mathbf{U}(\mathbf{s})]$$
$$= \lim_{t \to \infty} L^{-1} [G(\mathbf{s}) L [\sin(\omega t)]]$$

以上のように、伝達関数の算定方法としては各種 の方法が考えられる。本報では、正確な伝達関数を より簡便に算定する方法の提案を目的として、再現 性と信頼性の点で優れた特性を有する電気パルスに 着目し、まず伝達関数の算定の際に必要な入力波に ついて検討し、次に伝達関数の算定方法について検 討する。

なお、以下の考察で、正弦波を入力したときの定 常出力(以下,正弦波の定常出力と略記する)の振 幅を真の伝達関数の振幅であるものとみなして議論 を進めることにする。実験では、10kHz~300kHz (AE計測システムのフィルター・バンド幅に対応 する)の範囲で10kHz 毎に振幅一定の正弦波形電圧 を媒体に入力し、そのときの入力電圧値に対する出 力電圧値の比として正弦波の定常出力の振幅 | G (jω) | を求めている。

3・2 入力波の選定実験

3・2・1 実験の概要

AEの原波形解析を目的とした媒体および計測シ ステムの伝達関数の算定方法としては、金属材料を 解析の対象としたものではあるが、既に入力波とし てシャープペンシルの芯を圧折して生じる波を用い る方法が大平・岸¹⁰⁾によって提案され実用されてい る。しかし、この方法は、前述のように、入力波を 発生させるのにある程度の時間と手間が必要である ため、コンクリートのように、載荷レベルに応じて 媒体の内部構造が変化し、伝達関数をその都度逐次 求めなければならないような場合には実用的ではな い。そのため、本実験では、それに代わる入力波と して、ファンクション・ジェネレーターによって発 生させたパルス幅が1.5µ sec で、立上り・立下がり 時間が50n sec の矩波形(以下、便宜的にインパルス

 図-1 AE 計測システムのブロック・ダイアグラム(変換子を含まない AE 計測システムの 伝達関数算定用)

表-1 計測機器の設定感度

アンブの増幅度(dB)				フィルター	サンプリング
プリアンフ゜	አインアンフ°	合	計	ハンド幅 (kHz)	μsec)
20	0	20		10~300	1.0

波と略記する), パルス幅が10µ sec で, 立上り・立 下がり時間が50n sec の矩波形(以下, 矩形パルス波 と略記する)並びに立上り時間が50n sec のステップ 波の合計3種類の電気パルスを取り上げ, それらの 適用性を検討することとした。本実験で使用した伝 達関数算定用の媒体は, 比較的フラットな周波数特 性を有し, かつ減衰も小さいと考えられる変換子を 含まない AE 計測システムである。

本実験で用いた AE 計測システムおよび各測定機 器の設定値をそれぞれ図-1および表-1に示す。 伝達関数を算定する際に必要な入力波は、いずれも ファンクション・ジェネレーターによって発生させ て、AE 計測システムのプリ・アンプに直接入力し た。入力波および AE 計測システム通過後の検出波 は、一旦トランジェント・メモリー(サンプリング 間隔:1 µ sec、サンプリング個数:1024個/1波 形)に記憶させた後、ディジタル・データ・レコー ダで記録し、さらにそのデータを大型計算機に転送 して各種の波形処理を行った。ただし、AE 計測シス テムの伝達関数は、入・出力波形の計測データを移 動平均法を用いて平滑化した後、式(4)で表される入 力波と出力波との関係を用いて算定した。

3・2・2 結果とその考察

図-2(a),(b)および(c)は、インパルス波を 入力波として用いた場合の結果を示したもので、そ れぞれ入力波のフーリエスペクトル、検出波のフー リエスペクトル、および式(4)を用いて算定した AE 計測システムの伝達関数の振幅スペクトルを示して 山田和夫

(a) 入力波のフーリエスペクトル(b) 検出波のフーリエスペクトル(c) 伝達関数の振幅スペクトル

(a) 入力波のフーリエスペクトル (b) 検出波のフーリエスペクトル (c) 伝達関数の振幅スペクトル

図-3 式(4)による伝達関数の算定結果(矩形パルス波を用いた場合)

いる。ただし,図-2(c)中の太線は20回の計測結 果の平均値を,細線はそのばらつき(標準偏差)を 示している。また,同図中には,正弦波の定常出力 の振幅スペクトル(図中の "●")も併示してある。 なお,いずれの図もスペクトルはバンド幅15kHzの Lag Window によって平滑化したものが示してあ る。図-2(c)によれば,入力波としてインパルス 波を用いて算定した伝達関数の振幅スペクトルは, 個々の測定毎にかなりの変動を示しているが,正弦 波の定常出力の振幅スペクトルは,全周波数域にわ たって,これらの変動の範囲内に収まっていること がわかる。

図-3は、矩形パルス波を入力波として用いた場合の結果を図-2と同様の方法で整理したものである。図-3(c)によれば、入力波として矩形パルス波を用いた場合には、式(4)を用いて算定した AE 計

162

(a) 入力波のフーリエスペクトル(b) 検出波のフーリエスペクトル(c) 伝達関数の振幅スペクトル 図-4 式(4)による伝達関数の算定結果(ステップ波を用いた場合)

測システムの伝達関数の振幅スペクトルは、正弦波 の定常出力の振幅スペクトルとは大きく異なってし まうことがわかる。この原因は、図一3(a)および (b)からわかるように、入力波および出力波のフー リエスペクトルはともに約100kHz 毎に極小値をと るが、この極小値となる周波数が入力波と出力波と で若干異なっていることに起因しているものと考え られる。そのために、伝達関数が大きく乱れている 近傍でのばらつきは、他の周波数帯域に比べてかな り大きくなっている。

一方,図一4は、ステップ波を入力波として用いた場合の結果を図-2と同様の方法で整理したものである。図一4(c)によれば、入力波としてステップ波を用いた場合には、図一4(a)の入力波のフーリエスペクトルの150kHz以下の周波数帯域で認められる細かな振動が、そのまま伝達関数の振幅スペクトルにも現れており、伝達関数の振幅スペクトルは、正弦波の定常出力の振幅スペクトルに比べてかなり小さくなっていることがわかる。

また、図-2と図-4を比較すると、入・出力波 のフーリエスペクトル、および伝達関数の振幅スペ クトルは、いずれも入力波としてインバルス波を用 いた場合の方がステップ波を用いた場合よりもばら つきが大きくなっていることがわかる。これは、本 実験の場合、インパルス波のパルス幅が1.5µ sec で あるのに対して, 波形を一時的に記憶したトランジ エント・メモリーのサンプリング間隔が1µ sec と 相対的に粗いため, 記録のタイミングが個々の計測 毎に微妙にずれてしまうのが主な原因であるものと 思われる。したがって,入力波としてインバルス波 を用いた場合には,算定される伝達関数は精度の点 で若干の不安は残るが,実際の実験・計測で用いる フィルター・バンド幅(10k~300kHz)の周波数帯 域でのばらつきは,最大でも12%程度であり,それ ほど大きな問題はないものと考えられる。

以上の結果から判断すると,式(4)を用いて伝達関数を算定する場合には,入力波としてインパルス波を用いるのが適当と思われる。

3・3 伝達関数の算定方法の選定実験

3・3・1 実験の概要

3・2節では、伝達関数の算定に際して式(4)を適用 したが、入力波が単位インパルス関数または単位ス テップ関数である場合には、入力波のフーリエ変換 を求めなくても、それぞれ式(3)または式(3)を用いて 伝達関数を算定することができる。本節では、式(3) または式(3)を用いて算定した伝達関数の振幅スペ クトルと正弦波の定常出力の振幅スペクトルとを比 較するとともに、式(4)を用いて算定した伝達関数の 振幅スペクトルとも比較し、伝達関数の算定方法に ついて検討する。

図-5 式(3)による伝達関数の算定結果(単位インパルス波を用いた場合)

ただし、本実験で用いたインパルス波およびステ ップ波は、必ずしも単位関数にはなっていないため、 式(3)または式(3)'を用いて伝達関数を算定する際に は、入・出力関係が線形であるものと仮定して入力 波が単位関数となるように正規化した。なお、本実 験で用いた AE 計測システムおよび各測定機器の設 定値は3・2節で示した実験と同一であるため、ここ では省略する。

3・3・2 結果とその考察

図-5(a)~(c)は、単位インパルス波を入力波 として用いた場合の結果で、それぞれ代表的入力波 形、その検出 AE 波形、および式(3)を用いて算定し た AE 計測システムの伝達関数の振幅スペクトルを 示したものである。なお、図-5(c)中の太線およ び細線の意味、並びにスペクトルの平滑化手法は、 いずれも前掲の図-2の場合と同様であり、同図中 には、中正弦波の定常出力の振幅スペクトル(図中 の"●")も併示してある。図-5(c)から明らかな ように、式(3)を用いて算定した AE 計測システムの 伝達関数の振幅スペクトルと正弦波の定常出力の振 幅スペクトルとは、大きく相違していることがわか る。この原因は、本実験で用いたインパルス波が、 これを発生させるのに用いたファンクション・ジェ ネレーターの性能の関係で、パルス幅が1.5µ sec、 立上り・立下がり時間が50n sec という有限な時間を 有していること、および図-5(a)に示した代表的 波形からわかるように、立上り・立下がり部分で波 形の乱れが生じていることなど、実際には理想的な インパルス関数とかなり相違しているにも拘らず、 これを単位インパルス関数と仮定して伝達関数を求 めたことに起因しているものと考えられる。

一方,図一6は、単位ステップ波を入力波として 用いた場合の結果を図-5と同様の方法で整理した ものである。図-6(c)によれば、式(3)を用いて算 定した AE 計測システムの伝達関数の振幅スペクト ルと正弦波の定常出力の振幅スペクトルは、入力波

図ー6 式(3)による伝達関数の算定結果(単位ステップ波を用いた場合)

として単位インパルス波を用いた場合の結果と同様 にかなり相違しているが、相違の程度は、入力波と して単位インパルス波を用いた場合に比べて小さく なっている。これは、本実験で用いた単位ステップ 波が単位インパルス波と比較してより理想的な波形 に近かったことによるものと考えられる。しかし、 本実験で用いた実際の単位ステップ波形は、図一6 (a)からわかるように、立上り部分および立上り後 約200µ sec の間で波形の乱れが生じており、このこ とに起因して正弦波の定常出力の振幅スペクトルと 式(3)'を用いて算定した伝達関数の振幅スペクトル とが相違したものと思われる。なお、伝達関数の算 定に対する式(3)および式(3)'の適用性については、高 坪・吉田¹⁶が金属材料を対象として同様の検討を行 っており、本実験結果と類似した結果を得ている。

ところで,式(3)および式(3)からも明らかなよう に,実験で用いた単位インパルス波および単位ステ ップ波がともに理想的な波形であれば,単位インパ ルス波を入力波とした時の検出 AE 波形と単位ステ ップ波を入力波とした時の検出 AE 波形の1 階微分 値とは完全に一致しなければならない。しかし,実 験で用いた単位インパルス波および単位ステップ波 は、上述のように、ともに理想的な波形とは異なっ ているため、波の振幅が初動部分などに、微妙な相 違が観察される(図-7参照)。

以上のことから、本実験で用いた単位インパルス 波および単位ステップ波を理想的な波形であるもの と仮定することには無理があり、伝達関数の算定に は、本節で検討した式(3)および式(3)'よりも、入力波 形も考慮に入れた式(4)を用いた方が適しているもの と考えられる。そのため、以下では、式(4)を用いた 伝達関数の算定方法の妥当性および適用性について 検討することにする。

4. 伝達関数の算定方法の妥当性および適用性

4・1 伝達関数の算定方法の妥当性

4・1・1 実験の概要

3章では、比較的フラットな周波数特性を有する 変換子を含まないAE計測システムを算定の対象と して、電気パルスを入力波として用いた伝達関数の 算定方法に関する一連の検討を行った。その結果、 伝達関数を求める際に必要な入力波としてはインパ ルス波が、また伝達関数の算定式としては式(4)が最 適であることを明らかにした。本節では、これらの 手法が複雑な周波数特性を有する実際の媒体の伝達 関数を算定する場合にも適用可能であるか否かの検 証を行う。検証のために用いた媒体は、¢10×2 cm の軟鋼製円柱試験体である。

(b) 変換子を含む AE 計測システムと媒体の伝達関数算定用

図-8 AE 計測システムのブロック・ダイアグラ ム

本実験で用いた AE 計測システムを図-8(a)お よび(b)に示す。3章で示した実験で用いた AE 計 測システムでは、いずれもファンクション・ジェネ レーターによって発生させた波はプリ・アンプに直 接入力したが、本実験で用いた AE 計測システムで は、ファンクション・ジェネレーターによって発生 させた波は、まず発振用変換子を介して試験体に入 力し、次に受振用変換子で検出した波形をプリ・ア ンプに入力するという流れとなっている。ただし、 その他の流れは3章で示した実験の場合と同様であ る。また、各測定機器の設定値は、前掲の表-1と 同様である。

計測方法としては、まず媒体(試験体)と変換子 を含む AE 計測システムの伝達関数 G(j ω)(=G_s (j ω)•G_m(j ω))を算定するために、ファンクション・ ジェネレーターを用いて発生させたインパルス波 を、発振用変換子(AE-901Sセンサー、共振周波 数:約150kHz)を介して試験体に入力し、受振用変 換子(AE-905Sセンサー、共振周波数:約1 MHz (但し、本実験で採用したフィルター・バンド幅(10 k~300kHz)の周波数帯域では比較的フラットな周 波数特性を有する))によって試験体中を伝播した波 を検出した。次に、変換子を含む AE 計測システム の伝達関数 G_s(j ω)を算定するために、発振用およ び受振用の変換子を直接貼り合わせ、入力波を発振

図一9 入力波としてインパルス波を用いた場合の伝達関数の算定結果(変換子を含む AE 計測システムのみ)

用変換子から入力し、受振用変換子で検出した。な お、センサーの装着には、検出 AE 波形の各種特性 に及ぼすセンサー装着後の経過時間の影響が比較的 小さい熱可塑性樹脂を用いた¹⁷⁾。さらに、算定した媒 体と変換子を含む AE 計測システムの伝達関数 G $(j\omega)$ を、変換子を含む AE 計測システムの伝達関数 $G_s(j\omega)$ で除すことによって、媒体のみの伝達関数 $G_m(j\omega)$ を算定した。なお、本実験では、各伝達関数 を算定するに際しては、付録に示す拡大フィルター および縮小フィルターを適用して、計算誤差の拡大 防止を図った¹⁶。

4・1・2 結果とその考察

図-9(a)~(c)は、変換子を含む AE 計測シス テムに対する結果を示したもので、それぞれ代表的 入力波形、その検出 AE 波形および伝達関数の振幅 スペクトルを示している。ただし、図-9(c)中に は、正弦波の定常出力の振幅スペクトル(図中の

"●")が併示してある。先に述べたように、本実験 では、正弦波の定常出力は10kHzの周波数毎に離散 的に測定しているに過ぎないため、その振幅スペク トルでは、変換子を含む AE 計測システムの伝達関 数の複雑な周波数特性を忠実に再現することができ ない。この点を考慮すると、図-9(c)に示すよう に, 算定された変換子を含む AE 計測システムの伝 達関数の振幅スペクトルは、170kHz 近傍を除けば、 正弦波の定常出力の振幅スペクトルと比較的良い対 応を示しているといえる。また、図-10は、軟鋼製 試験体と変換子を含む AE 計測システムに対する結 果を図-9と同様の方法で整理したものである。図 -10(c)から明らかなように、軟鋼製試験体と変換 子を含む AE 計測システムの伝達関数の振幅スペク トルはかなり複雑な形状を示しているが、この場合 にも算定された伝達関数の振幅スペクトルと正弦波 の定常出力の振幅スペクトルとは良く対応してい

る。

一方,図一11は,図-9および図一10の結果に基 づいて算定される軟鋼製試験体の伝達関数の振幅ス ペクトルを,正弦波の定常出力の振幅スペクトルと 比較したものである。図によれば,正弦波の定常出 力の振幅スペクトルと算定された伝達関数の振幅ス ペクトルとの間には若干の相違がみられるが,全体 的にはよく一致しているといえる。なお,図一11で 観察される若干の相違は,図-9からもわかるよう に,変換子を含む AE 計測システムに関する正弦波 の定常出力の振幅スペクトルが,100kHz以下の低 周波数帯域および250kHz 以上の高周波数帯域にお いて微小成分を多く有するために,計算の際に誤差 が拡大されたものではないかと思われる。

したがって、本研究で提案した伝達関数の算定方 法を用いることによって、複雑な周波数応答特性を 有する媒体の伝達関数もかなり正確に推定すること ができるものと考えられる。

4・2 伝達関数の算定方法の原波形解析への適用 性

4・2・1 実験の概要

本実験は、本研究で提案した伝達関数の算定方法 の原波形解析への適用性を検証するための実験で、 発振用変換子を介してコンクリート試験体に入力し た正弦波を受振用変換子によって検出して原波形解 析を行い、解析結果と入力した正弦波の波形とを比 較・検討した。試験体は、空中養生(温度:20°±2℃、 湿度:75±5%)を約5年行った10×10×19cmの 横打ちコンクリート角柱試験体である。

原波形解析用の計測システムは前掲の図-8(b) と同様である。本実験で用いた各測定機器の設定値 を表-2に示す。本実験では、ファンクション・ジ ェネレーターを用いて発生させた振幅10Vp-p、周波 数100kHzの一周期の正弦波を、発振用変換子(AE -901Sセンサー)を介して試験体に入力し、受振用 変換子(AE-905Sセンサー)によって検出した。

図-11 入力波としてインパルス波を用いた場合の 伝達関数の算定結果(媒体のみ)

なお, センサーの装着方法および伝達関数の算定手 順は, 4・1節で示した実験に準じている。原波形解 析には, 前掲の式(2)を適用し, まず源波形のフーリ エ変換を求めた後, これを逆フーリエ変換して源波 形を算定した。

4・2・2 結果とその考察

図-12(a)~(d)は、原波形解析結果を示したも ので、それぞれAE計測システムを含む計測系と媒 体(コンクリート試験体)の伝達関数の振幅スペク トル、コンクリート試験体に入力した正弦波の入力 波形、検出波形および原波形解析によって得られた 入力波形の推定結果を示している。ただし、原波形 解析に際しては、本計測システムで採用したフィル ター・バンド幅(10k~300kHz)と同一のバンド・ パス・フィルターを用いて雑音の影響を低減してい る。図によれば、原波形解析によって推定された入 力波形(図-12(d)参照)は、源入力波形(図-12(b) 参照)と比較して、振幅がやや小さく、かつ高周波

表-2 計測機器の設定感度

アンコ	プの増幅度(dB)	フィルター バンド幅 (kHz)	サンプリング 間 隔 (µsec)
プリアンプ	አインアンフ°	合 計		
20	40	60	10~300	1.0

数成分の雑音が若干残ってはいるものの,全体的に は入力波形の特徴を比較的精度よく再現しており, 本研究で提案した伝達関数の算定方法が原波形解析 に対しても十分に適用可能であることを示してい る。

なお, 推定された入力波形が源入力波形と若干相 違している主な原因としては,本実験で用いた波形 データのサンプリング間隔が1μ sec と,入・出力 波の周期と比較して十分には小さくなかったこと, 検出波形が計測時間(1024μ sec)内で十分に減衰し きっていなかったこと,電気インバルス波の入力に よって算定される伝達関数が測定毎に変動するこ と,原波形解析の計算過程で生じる数値計算誤差な どが考えられる。

5. 結 論

本論では、AEの原波形解析を行う際に必要な媒体(試験体)の伝達関数の算定方法について一連の検討を行った。得られた結果を要約すると、およそ次のようになる。

- 入力波および出力波の特性を考慮に入れた伝達
 関数の算定方法(式(4))を適用した場合,入力
 波としてインバルス波を用いるのが精度と簡便
 性の点で適している。
- 2)ファンクション・ジェネレーターで発生させた 入力波が理想的な単位インパルス波または単位 ステップ波であるものと仮定して出力波の特性 のみから伝達関数を算定する方法(式(3)および 式(3))は、その仮定に若干の無理があり、伝達 関数の算定方法としては適当でない。
- 3)本研究で提案した伝達関数の算定方法は、複雑 な周波数応答特性を示す実際の試験体に対して も十分に適用可能である。
- 4)本研究で提案した伝達関数の算定方法によって 求めた伝達関数を原波形解析に適用することに よって、検出波から入力波を比較的精度良く推 定することができる。

体の伝達関数の振幅スペクトル

[謝辞]

本研究の実施に際して有益なる御助言を賜りまし た名古屋大学小阪義夫教授および三重大学谷川恭雄 教授,並びに実験およびデータ整理に際して御助力 を得た土田崇仁(伊藤建築設計事務所)および土屋 宏明君(清水建設㈱)に対して謝意を表します。な お,実験データの整理には,名古屋大学大型計算機 センターのFACOM M-382を使用し,また,本研究 費の一部は,文部省科学研究費補助金(奨励研究 (A))によったことを付記する。

引用文献

- 小阪義夫,谷川恭雄:複合材料としてのコンク リートの力学性質,材料,第14巻,pp.368-379, 昭和50.5.
- 2)和泉正哲,三橋博三:コンクリートの破壊現象 とその解明に関する若干の考察,東北大学建築

学報, 第16号, 昭和50. 3.

- 3)小林昭一,大津政康:アコースティック・エミ ッションのコンクリート工学への応用,コンク リート工学, Vol. 16, No.7, pp.9-17,昭和 53.7.
- 4)日本建築学会・コンクリート非破壊試験法研究 小委員会:コンクリートの非破壊試験法に関す る研究の現状と問題点,123pp.昭和56.5.

- 5)谷川恭雄、山田和夫、桐山伸一:コンクリートのアコースティック・エミッションの周波数特性、第2回コンクリート工学年次学術講演論文集、pp.129-132、昭和55.6.
- 6)谷川恭雄、山田和夫、桐山伸一:コンクリートの破壊モードとアコースティック・エミッションの周波数特性との関係、セメント技術年報、 第35巻、pp. 405-408、昭和56.
- 7) Y. Tanigawa, K. Yamada and S. Kiriyama: Relationship between Fracture Mode and Acoustic Emission Characteristics of Mortar, Proc. of JCMR, Vol. 24, pp. 241-247, March 1981.
- 3)小阪義夫,谷川恭雄,山田和夫,鈴木清孝:コンクリートの累積損傷とAE特性との関係,セメント技術年報,第36巻,pp.229-232,昭和57.
- 9)小阪義夫,谷川恭雄,山田和夫:コンクリートのアコースティック・エミッション特性と破壊 挙動に関する研究,日本建築学会構造系論文報 告集,No. 358, pp. 22-33,昭和60.12.
- 大平貴規,岸輝雄:AE 原波形解析による破壊の動的素過程に関する研究,日本金属学会誌, 第46巻,第5号,pp.518-525,1982.
- 11) 岸輝雄,若山修一,篠崎泰夫,香川豊,中田栄
 一:AE 原波形解析によるアルミナの破壊靱性
 試験におけるき裂進展の評価,日本金属学会誌, 第49巻,第9号, pp. 707-713, 1985.
- 12) 丹羽義次,小林昭一,大津政康,奥田和男:ア コースティック・エミッションの周波数特性に 関する考察,土木学会論文報告集,第314号,pp. 137-147,1981.10.
- 13) 尼崎省二,明石外世樹,高木宣章,平野博範: 超音波スペクトル解析によるコンクリートの品 質評価について,第40回セメント技術大会講演 要旨,pp.92-93,昭和61.5.
- 14) 坂田康徳、大津政康:弾性波フィルター特性に よるコンクリートのひび割れ評価法に関する基 礎研究、コンクリート工学、Vol. 24, No. 7, pp. 135-145, 1986. 7.
- 15)伊藤正三監修:生体信号処理の基礎,オーム社, 268pp.,昭和60.3.
- 高坪純治,吉田憲一:電気パルスを用いた AE 原波形解析,第4回 AE 総合コンファレンス論 文集,pp. 25-30,昭和58.

 17) 土田崇仁, 土屋宏明,山田和夫,小阪義夫:コンクリートの累積損傷に伴う AE の減衰特性, 日本建築学会東海支部研究報告集,第25号,pp. 45-48,昭和62.2.

[付録] ――数値フィルター¹⁶⁾――

ここで定義する2種類の数値フィルターは、いず れも本文で示した式(4)を用いて伝達関数を算定する 際に生じる数値計算上の誤差を低減させ、伝達関数 を平滑化するためのものである。拡大フィルターは、 式(4)の分母にあたる入力波のフーリエ変換の微小成 分をその大きさに応じて拡大する働きを、また縮小 フィルターは、式(4)の分子にあたる出力波のフーリ エ変換の微小成分をその大きさに応じて縮小する働 きをもつ。

(1) 拡大フィルター

まずフーリエスペクトルの最大値が1となるよう に正規化したスペクトルを $F(\omega)$ とし、次に図-A. 1(a)に示すような数値フィルター $Z_A(\omega)$ を $F(\omega)$ に乗じて微小スペクトル成分を拡大する。これを式 で表すと次のようになる。

$$\begin{split} F^*(\omega) = Z_A(\omega) \cdot F(\omega) \\ Z_A(\omega) = c \cdot a^{-F(\omega)} / F(\omega) + 1 \qquad \cdots \cdots (A.1) \\ c こ に, F^*(\omega) は フィ ルター通過後の スペクト \\ n, a および c は定数で, それぞれ以下のように決 定する。 \\ F(\omega) = f_1 のとき Z_A(\omega) = 1 + c_1, \\ F(\omega) \to 0 \quad o とき F^*(\omega) \to c_2 \\ l t かって, \\ a = (f_1 \cdot c_1/c_2)^{-1/f_1}, \quad c = c_2 \\ t : t l, f_1, c_1, c_2 : 定数。 \end{split}$$

(2) 縮小フィルター

まず $F(\omega)$ を拡大フィルターと同様に定義し、次 に図-A.1(b)に示すような数値フィルター Z_B (ω) を $F(\omega)$ に乗ずることによって、微小スペクト ル成分をさらに縮小する。これを式で表すと次のよ うになる。

 $F^*(\omega) = Z_B(\omega) \cdot F(\omega)$

 $Z_B(\omega) = 1 - b^{-F(\omega)}$ (A.2)

ここに、bは定数で以下のように決定する。

 $F(\omega) = f_1$ のとき $Z_B(\omega) = 1 - c_1$

したがって,

 $b = c_1^{-1/f_1}$

ただし, f₁, c₁:定数。

本研究で用いた,上記の各数値フィルターに含まれる定数の値は, $f_1=0.30$, $c_1=c_2=0.01$ である。

(受理 平成元年1月25日)