p型Czochralski成長シリコンウエーハのDLTS評価

Deep-level transient spectroscopy studies of p-type Czochralski-grown silicon wafers

加藤勇夫^{††}、 徳田 豊[†] Isao KATOH, Yutaka TOKUDA

Abstract Hole traps in boron doped p-type Czochralski-grown (100) silicon wafers have been studied by deep-level transient spectroscopy. Three hole traps of E_v +0.10 eV(H1), E_v +0.42 eV(H2) and E_v +0.44 eV(H3) are observed. Their concentration is in the range $10^{10}-10^{13}$ cm⁻³. Trap H2, H3 are annealed out in the temperature range 300° C-350 $^{\circ}$ C. Trap H1 is probably associated iron-boron complex, since its hole thermal emission data coincide with those of iron-boron complex. However, the origins of trap H2, H3 are still unknown.

1. はじめに

シリコンの集積回路は、微細化技術の進歩により、 年々、高性能化、高集積化している。これに伴い、 その基板として用いられている Czochralski (C Z)成長シリコンウエーハは、より高い結晶性が求 められている。

シリコン結晶中に存在する不純物や析出物などの 結晶欠陥は、接合の漏れ電流の増大やMOSのゲー ト酸化膜の耐圧低下などデバイスの電気的特性に悪 影響を及ぼす。こうした結晶欠陥は、現在も低減化 の努力がなされている。しかし、デバイスの微細化 の進歩は著しく、結晶欠陥がウエーハ中に微量存在 するだけでさえも、デバイス特性に与える影響が無 視出来なくなりつつある。したがって、今後、デバ イスの歩留まりの維持向上をはかるためには、さら なる結晶欠陥の低減が重要な課題となっており、そ のため、シリコンウエーハに存在する微少濃度欠陥 の評価が重要になっている。

†† 大学院生

これまで、特に電気的特性の評価方法としては、少 数キャリアライフタイム測定が非常に高感度であると いう特長から広く用いられている。しかし、少数キャ リアライフタイム測定は、複数のトラップが存在して いる場合、その弁別は容易ではない。

そこで、我々は微少濃度欠陥の評価手段として、 スペクトロスコピックな性質を持っており、しかも、 高感度な測定法であるDLTS(Deep-level transient spectroscopy)法を用いて、これまでに 市販のリンドープn型シリコンウエーハ中に存在する 微少濃度欠陥の電気的評価を行い、その結果について 報告を行ってきた。^{1),2)}そして、今回、市販のボロ ンドープp型CZシリコンウエーハ中に存在するト ラップの電気的特性の評価としてDLTS測定を 行ったところ、3つの正孔トラップが観測された。 本稿ではその結果について報告する。

2. 実験方法

本実験には、国内の主要なウエーハメーカ(3 社)より入手した5種類のボロンをドープしたp型 (100)CZシリコンウエーハを使用した。これ

[†] 愛知工業大学 電子工学科 (豊田市)

表2 各ウエーハでのトラップH1、H2、H3の 濃度

Citera de				
	試料	H 1 $[cm^{-3}]$	H 2 [cm ⁻³]	H 3 [cm ⁻³]
	А	6.0 x 10 ¹⁰	6.1 x 10 ¹²	8.2 x 10^{10}
	В	1.0×10^{11}	1.4×10^{12}	2.7 x 10 ¹¹
	С	5.2 x 10^{10}	2.3 x 10^{12}	_
	D		_	—
	Е	2.5 x 10^{11}	geographic and the second s	_

ては、トラップは観測されなかった。さらに、A社のウエーハにだけトラップH2、H3が観測されるというウエーハメーカの違いによる差がみられた。

次に、各ウエーハで得られたトラップH1、H2、 H3の濃度についてまとめたものを表2に示す。ト ラップH1の濃度は、 $10^{10} \sim 10^{11}$ cm⁻³で あり、また、ウエーハメーカにより違いはあまりみ られなかった。トラップH2、H3はA社のウエー ハだけに存在しており、また、その濃度(10^{11} ~ 10^{12} cm⁻³)は、我々が以前に評価を行っ た市販のn型シリコンウエーハ中に存在しているト ラップの濃度(およそ 10^{10} cm⁻³オーダ)と比 較すると非常に高濃度である。

図2はこれら3つの正孔トラップの正孔の熱放出 割合の温度依存性を示す。また、表3には正孔ト ラップのエネルギー準位及び正孔捕獲断面積を示す。 ただし、ここでの正孔捕獲断面積は温度に依存しな いと仮定して計算した値である。

また、比較のためこれらのトラップとこれまでに 報告されている欠陥の中でこれらのエネルギー準位 の近いものと熱放出割合の温度依存性を比較を行っ た。その結果、トラップH1は、ボロンドープ p型 シリコンにFeを故意にドープした時生じること がよく知られているFe-B複合体(E_v+0.1 OeV)^{3),4)}、トラップH2、H3は、それぞ れ Broterton ら⁵⁾によって報告されている p型 シリコンに、Au、Feを故意にドープした時に得 られるAu-Fe複合体(E_v+0.43eV)、 格子間Fe(Fe_i)(E_v+0.42eV)と近 いことがわかった。

トラップH2、H3は熱放出割合の温度依存性の 比較からAu-Fe複合体、Fe_iである可能性が あるが、市販ウエーハに10¹¹~10¹² cm⁻³ もこれらのトラップが存在するとは一般的には考え 難い。そこで、ショットキー電極作製プロセスの チェックを行った。

図2 各トラップの正孔の熱放出割合の温度依存性

表3 トラップH1、H2、H3のエネルギー準位及び正孔捕獲断面積

トラップ	エネルギー準位	正孔捕獲断面積
	[eV]	$[\operatorname{cm}^2]$
H 1	E _v +0.10	3. 5×10^{-14}
H 2	E _v +0. 42	$1.3 x 10^{-14}$
Н3	E _v +0. 44	2. 1×10^{-15}

表1 使用した p型CZシリコンウエーハの抵抗率 及び格子間酸素濃度

試料	抵抗率	酸素濃度	メーカ
P 111	$[\Omega cm]$	$x10^{18}[cm^{-3}]$, ,
A	150 - 300	1.4	A社
В	10 - 20	1.2	A社
С	10 - 20	1.2	A社
D	6.0 - 8.0	1.2	B社
E	4.5 - 6.0	0.9	C社

らのウエーハの諸特性(抵抗率、格子間酸素濃度) を表1に示す。また、ここでは、都合上メーカ名を A社、B社、C社とする。

DLTS測定を行うため、ショットキーダイ オードの作製を行った。その際、試料はウエーハか ら1cm角に切り出したものを使用した。ショット キー電極は、ウエーハ表面にMgを真空蒸着するこ とにより形成した。また、Mgは酸化し易いため、 Mgの酸化防止のためにMg蒸着後、続けてAuを Mg上に重なるように蒸着を行った。オーミック電 極にはGaを用いた。これら一連の試料の作製プロ セスは、全て室温にて行った。

従来、オーミック電極の作製には、熱プロセスを 必要としたが、今回、Gaを用いることで室温にて 試料作製が可能となり、ウエーハメーカより供給さ れたままのウエーハの評価が可能となった。

また、トラップの熱的特性を調べるための熱処理 は、ショットキー作製前に100℃から400℃ま での温度範囲を50℃刻みで、30分問、窒素雰囲 気中において行った。

DLTS法は、S/Nの良好な方形波重み関数を 用いた方形波重み関数方式DLTS法を使用した。 また、ダイオードの接合容量測定には、キャパシタ ンスメータ BOONTON 72B を使用した。また、DLT S測定は、極低温冷凍機 Iwatani CryoMini D105 を用いて、30Kから300Kまでの温度範囲を、 掃引速度0.5K/minで温度掃引することで行っ た。

DLTS測定の条件は、捕獲側パルス幅が10ms、捕獲側パルスが0V、放出側パルスが-10V、 τ_{max} が19.1msである。

3. 実験結果及び検討

図1(a)には、ウエーハAの30Kから90K までの温度領域において観測されたDLTS信号を、 また、図1(b)には、ウエーハAの90Kから3 00Kまでの温度領域において観測されたDLTS 信号を示す。

ウエーハAでは、まず、図1 (a) においては、 H1 (E_v +0.10 e V) と名付けた1つの正孔 トラップが、次に図1 (b) においては、H2 (E_v +0.42 e V)、H3 (E_v +0.44 e V) と名付けた2つの正孔トラップが観測された。

図1に示したウエーハA以外のウエーハにおいて も、ウエーハBとウエーハCでは、トラップH1、 H2、H3が観測された。また、ウエーハEでは、 トラップH1だけが観測され、また、ウエーハDで は、検出感度の8x10¹⁰ cm⁻³の範囲内におい

図1 ボロンドープp型CZシリコンウエーハ (ウ エーハA)のDLTS信号 (τ_{max}=19.1ms)

図3 プロセスチェックに用いた5種類のショット キー電極作製プロセス

プロセスのチェックに際しては、以下の3つの点 に着目して行った。(1) Mgの酸化防止にMg上 にAuを蒸着したこと、(2) Mg材料中にFeが 含まれていること、(3) 蒸着前の洗浄プロセスで ある。

図3に、プロセスチェックのため行った5種類の ショットキー電極作製プロセスを示す。(a)は通 常のショットキー電極作製プロセスである。(b) ではAu蒸着の影響を調べるため、Mg上にAuを 蒸着しない試料を作製し測定を行った。その結果、 (b)でもトラップH2、H3が観測された。また、 その濃度についても(a)の場合と差はみられな かった。したがって、Au蒸着の影響はないと考え られる。

また、使用した電極材料のMgには0.001w t%の鉄が含まれているため、(c)では電極材料 をMgからA1に替えてショットキー電極を作製し 測定を行った。その結果、この場合もトラップII2、 H3が観測された。また、Feの固溶度からみても Feの混入は考え難いので、蒸着時におけるMgか らのFeの混入の可能性も否定される。

次に、洗浄プロセスのチェックを行うため、 (d)では有機洗浄プロセスを抜いた。さらに、良 好なショットキー作製できるか不安があったが、 (e)では洗浄プロセスを全て抜いてショットキー 電極を作製し測定を行った。その結果、(d)、 (e)のいずれの場合でもトラップH2、H3が観 測された。したがって、洗浄プロセスでの導入され たとも考え難い。これらのプロセスチェックの結果

図4 30分等時間熱処理後のトラップH2、H3<濃度の変化

から、トラップH2、H3がプロセスによって導入 されたものでなく、ウエーハ中にもともと存在して いると考えざる得ない。

図3には、トラップH2、H3の30分の等時間 熱処理後の濃度の変化を示す。トラップH2、H3 ともに、300~350℃でアニールアウトした。 この結果は、Brotherton ら⁵⁾が報告によるAu -Fe複合体、Fe_iの熱処理の結果との一致して いる。しかしながら、我々の試料では熱処理前にA uの信号が観測されておらず、また、トラップH1 の消滅した後もAuの信号が観測されていない。さ らに、一般には市販ウエーハにAu、Feが多量に 存在しているとは考え難い。したがって、現在のと ころ、トラップH2、H3の起源については不明で ある。

また、これらのトラップがデバイス特性に与える 影響に関しては、この熱処理の結果より、これらの トラップは300~350℃程度の比較的低温で消 滅するため、高温(1000℃内外)の熱を伴うデ バイスプロセス後では、これらのトラップそのもの は存在しないので直接的影響はないと考えられるが、 姿を変えている存在している可能性も考えられ、間 接的に何らかの影響を及ぼす可能性もあると思われ る。

4. まとめ

5 種類の市販ボロンドープ p 型C Z シリコンウ エーハのD L T S 法による評価を行い、E,+0. 10 e V、E_v+0.42 e V、E_v+0.44 e V に準位をもつ3つの正孔トラップを観測した。この うち、E_v+0.10 e Vに準位をもつトラップは、 4種類のウエーハで観測された。このトラップの起 源は、正孔放出割合の温度依存性の比較からFe-B複合体である可能性がある。

また、 E_v +0.42 eV、 E_v +0.44 eVに 準位をもつトラップは、あるメーカの3種類のウ エーハ全てで観測された。これらのトラップの起源 は、今のところ不明である。

これらのトラップが与えるデバイスの特性への影響については、これらのトラップは300~35 0℃程度の熱処理で消滅するので、直接的にデバイ ス特性への影響はないと考えられるが、トラップが 単に姿を変えているだけの可能性もあり、今後、更 なる検討が必要である。

参考文献

 Y. Tokuda, I. Katoh, M. Katayama and T. hattoyi : " Deep-level transient spectroscopy studies of Czochralskigrown n-type silicon ", Mat. Res. Soc. Symp. Proc., Vol. 324., 373-378, 1994.

- Y. Tokuda, I. Katoh, H. Ohshima and T. Hattori : "Observation of hydorogen in commercial Czochralskigrown silicon wafers ", Semicond. Sci. Technol., 9, 1733-1735, (1994).
- S. D. Brotherton, P. Bradley and
 A. Gill: "Iron and the iron-boron complex in silicon", J. Appl. Phys., 57(6), 1941-1943, (1985).
- 4) D. Mathot : "Quenched-in defect removal through silicide formation by rapid thermal processing ", Appl. Phys. Lett., 58(2), 131-133, (1991).
- 5) S. D. Brotherton, P. Bradley, A. Gill and E. R. Weber : "Electrorical observation of Au-Fe complex in silicon", J. Appl. Phys., 55(4), 952-956, (1984).

(受理 平成7年3月20日)