AIT Associated Repository of Academic Resources >
A.研究報告 >
A1 愛知工業大学研究報告 >
2.愛知工業大学研究報告 .A(1976-2007) >
29号 >
このアイテムの引用には次の識別子を使用してください:
http://hdl.handle.net/11133/1935
|
タイトル: | 関数核の正則性とポテンシァルの無限遠点の近傍での挙動について |
その他のタイトル: | カンスウ カク ノ セイソクセイ ト ポテンシァル ノ ムゲン エンテン ノ キンボウ デノ キョドウ ニツイテ On the regularity of function-kernels and the behavior of potentials in a neighborhood of the point at infinity : Dedicated to Professor Mitsuru NAKAI on the occasion of his 60th birthday |
著者: | 樋口, 功 HIGUCHI, Isao |
発行日: | 1994年3月31日 |
出版者: | 愛知工業大学 |
抄録: | Let G be a symmetric and continuous function-kernels on a locally compact Hausdorff space X and δ be the point at infinity. In this paper, first we define the several notions of thinness of a closed set at infinity δ and investigate the mutual relations among them. For a non-negative G-superharmonic function u, we denote by R^<X, δ>_G(u) the G-reduced function of u to δ. A kernel G satisfying the domination principle is said to be regular when we have R^<X, δ>_G(Gμ)(x)=0 G-nearly everywhere on X for the potential G_μ of any positive mesure μ with compact support. The regularity of kernels plays an important role in the theory of Hunt kernels. The purpose of this paper is to characterize the regularity of function-kernels by the behavior of potentials in a neighborhood of infinity δ. We shall prove that a continuous function-kernel G is regular if and only if, for every mesure p with finite G-energy, the potential G_μ is equal to 0 G-quasi-everywhere at infinity δ under the assumption that G satisfies the complete maximum principle. |
URI: | http://hdl.handle.net/11133/1935 |
出現コレクション: | 29号
|
このリポジトリに保管されているアイテムは、他に指定されている場合を除き、著作権により保護されています。
|